Microorganisms in High‐temperature Sulfur Environments

Abstract

Sulfur‐rich high‐temperature environments such as solfataric fields, hot springs and ‘black smokers’ provide habitats for microbial life at the upper temperature border. Such regions have yielded hyperthermophilic bacteria and archaea that grow optimally at temperatures above 80°C, some even above 100°C.

Figure 1.

16S rRNA‐based phylogenetic tree (schematic drawing; lineages of hyperthermophiles in bold lines).

Figure 2.

Reactions of a hot sulfur cycle catalysed by sulfur‐metabolizing hyperthermophiles.

close

References

Barns SM, Fundyga RE, Jeffries MW and Pace NR (1994) Remarkable Archaeal diversity detected in a Yellowstone National Park hot spring environment. Proceedings of the National Academy of Sciences of the USA 91: 1609–1613.

Blöchl E, Rachel R, Burggraf S et al. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1: 14–21.

Hattori K and Cameron EM (1986) Archaean magmatic sulphate. Nature 319: 45–47.

Huber R, Burggraf S, Mayer T et al. (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376: 57–58.

Huber H, Hohn MJ, Rachel R et al. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.

Huber R, Stoffers P, Cheminee JL, Richnow HH and Stetter KO (1990) Hyperthermophilic archaebacteria within the crater and open‐sea plume of erupting Macdonald Seamount. Nature 345: 179–181.

Hugenholz P, Pitulle C, Hershberger KL and Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. Journal of Bacteriology. 180: 366–376.

Kashefi K, Holmes D, Reysenbach A‐L and Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Applied and Environmental Microbiology 68: 1735–1742.

Prangishvili D, Forterre P and Garret RA (2006) Viruses of Archaea: a unifying view. Nature Reviews Microbiology 4: 837–848.

Reysenbach A‐L, Liu Y, Banta AM et al. (2006) A ubiquitous thermoacidophilic archaeon from deep‐sea hydrothermal vents. Nature 442: 444–447.

Sokolova TG, Jeanthon C and Kostrikina NA (2004) The first evidence of anaerobic carbon monoxide oxidation coupled with hydrogen production by a hyperthermophilic archaeon isolated from a deep‐sea hydrothermal vent. Extremophiles 8: 317–323.

Stetter KO and Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305: 309–311.

Stetter KO, Huber R, Blöchl E et al. (1993) Hyperthermophilic archaea are thrieving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743–745.

Svetlichny VA, Sokolova TG and Gerhardt M (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a carbon monoxide‐utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Systematic and Applied Microbiology 14: 254–260.

Takai K and Horikoshi K (1999) Genetic diversity of archaea in deep‐sea hydrothermal vent environments. Genetics 152: 1285–1297.

Vagras M, Kashefi K, Blunt‐Harris E and Loveley DR (1998) Microbiological evidence of Fe(III) reduction on early Earth. Nature 395: 65–67.

Woese CR (1987) Bacterial evolution. Microbiological Reviews 51: 221–271.

Woese CR, Kandler O and Wheelis ML (1990) Towards a natural system of organisms: proposal for the domain archaea, bacteria, and eucarya. Proceedings of the National Academy of Sciences of the USA 87: 4576–4579.

Further Reading

Bernhardt G, Ludemann H‐D, Jaenicke R, König H and Stetter KO (1984) Biomolecules are unstable under ‘black smoker’ conditions. Naturwissenschaften 71: 583–585.

Brierley CL and Brierley JA (1973) A chemolithoautotrophic and thermophilic microorganism isolated from an acidic hot spring. Canadian Journal of Microbiology 19: 183–188.

Brock TD (1982) Thermophilic Microorganisms and Life at High Temperatures. New York: Springer.

Ernst WG (1983) The early Earth and the archaean rock record. In: Schopf JW (ed.) Earth's Earliest Biosphere, Its Origin and Evolution, pp. 41–52. Princeton, NJ: Princeton University Press.

Huber G and Stetter KO (1991) Sulfolobus metallicus sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metalmobilizers. Systematic and Applied Microbiology 14: 372–378.

Stetter KO (1986) Diversity of extremely thermophilic archaebacteria. In: Brock TD (ed.) Thermophiles: General, Molecular and Applied Microbiology, pp. 39–74. New York: Wiley.

Stetter KO (1992) Life at the upper temperature border. In: Tran Thanh Van Jand K, Mounolou JC, Schneider J and McKay C (eds) Frontiers of Life, pp. 195–219. Gif‐sur‐Yvette, France: Editions Frontières.

Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiology Reviews 18: 149–158.

Stetter KO (1999) Volcanoes, hydrothermal venting, and the origin of life. In: Marti J and Ernst GJ (eds) Volcanoes and the Environment. Cambridge: Cambridge University Press.

Woese CR (1987) Bacterial evolution. Microbiological Reviews 51: 221–271.

Woese CR (1998) The universal ancestor. Proceedings of the National Academy of Sciences of the USA 95: 6854–6859.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Bonch‐Osmolovskaya, Elizaveta(Sep 2007) Microorganisms in High‐temperature Sulfur Environments. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0000405.pub2]