| References |
|
|
Agogué H,
Brink M,
Dinasquet J and
Herndl G
(2008)
Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic.
Nature
456:
788791.
|
|
|
Barns SM,
Delwiche CF,
Palmer JD and
Pace NR
(1996)
Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences.
Proceedings of the National Academy of Sciences of the USA
93:
91889193.
|
|
|
Biddle JF,
Fitz-Gibbon S,
Schuster SC,
Brenchley JE and
House CH
(2008)
Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment.
Proceedings of the National Academy of Sciences of the USA
105:
1058310588.
|
|
|
Biddle JF,
Lipp JS,
Leverd MA et al.
(2006)
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru.
Proceedings of the National Academy of Sciences of the USA
103:
38463851.
|
|
|
Bintrim SB,
Donohue TJ,
Handelsman J,
Roberts GP and
Goodman RM
(1997)
Molecular phylogeny of Archaea from soil.
Proceedings of the National Academy of Sciences of the USA
94:
277282.
|
|
|
Blochl E,
Reinhard R,
Burgraff S et al.
(1997)
Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit of life to 113°C.
Extremophiles
1:
1421.
|
|
|
Boetius A,
Ravenschlag K,
Schubert CJ et al.
(2000)
A marine microbial consortium apparently mediating anaerobic oxidation of methane.
Nature
407:
623626.
|
|
|
Bräuer SL,
Cadillo-Quiroz H,
Yashiro E,
Yavitt JB and
Zinder SH
(2006)
Isolation of a novel acidiphilic methanogen from an acidic peat bog.
Nature
442:
192194.
|
|
|
Buckley DH,
Graber JR and
Schmidt TM
(1998)
Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soil.
Applied and Environmental Microbiology
64:
43334339.
|
|
|
Cavicchioli R
(2006)
Cold-adapted archaea.
Nature Reviews Microbiology
4:
331343.
|
|
|
book
Dawson SC,
DeLong EF and
Pace NR
(2006)
"Phylogenetic and ecological perspectives on uncultured Crenarchaeota and Korarchaeota".
In: Dworkin M,
Falkow S,
Rosenberg E,
Schleifer K-H and
Stackebrandt E (eds)
The Prokaryotes, Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes,
pp. 281289.
New York: Springer-Verlag.
|
|
|
DeLong EF
(1992)
Archaea in coastal marine environments.
Proceedings of the National Academy of Sciences of the USA
89:
56855689.
|
|
|
Elkins JG,
Podarc M,
Grahamd DE et al.
(2008)
A korarchaeal genome reveals insights into the evolution of the Archaea.
Proceedings of the National Academy of Sciences of the USA
105:
81028107.
|
|
|
Fuhrman JA and
Davis AA
(1997)
Widespread Archaea and novel bacteria from the deep-sea as shown by 16S rRNA gene sequences.
Marine Ecology Progress Series
150:
275285.
|
|
|
Fuhrman JA,
McCallum K and
Davis AA
(1992)
Novel major archaebacterial group from marine plankton.
Nature
356:
148149.
|
|
|
González JM,
Sheckells D,
Viebahn M et al.
(1999)
Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring.
Archives of Microbiology
172:
95101.
|
|
|
Hallam SJ,
Mincer TJ,
Schleper C et al.
(2006)
Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota.
PLoS Biology
4:
e95.
|
|
|
Herndl GJ,
Reinthaler T,
Teira E et al.
(2005)
Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean.
Applied and Environmental Microbiology
71:
23032309.
|
|
|
Hershberger KL,
Barns SM,
Reysenbach A-L,
Dawson SC and
Pace NR
(1996)
Wide diversity of Crenarchaeota.
Nature
384:
420.
|
|
|
Hinrichs K-U,
Hayes JM,
Sylva SP,
Brewer PG and
DeLong EF
(1999)
Methane consuming archaebacteria in marine sediments.
Nature
398:
802805.
|
|
|
book
Hoehler TM and
Alperin MJ
(1996)
"Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations".
In: Lidstrom ME and
Tabita RF (eds)
Microbial Growth on C-1 Compounds,
pp. 326333.
Dordrecht: Kluwer Academic Publishers.
|
|
|
Ingalls AE,
Shah SR,
Hansman RL et al.
(2006)
Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon.
Proceedings of the National Academy of Sciences of the USA
103:
64426447.
|
|
|
Jurgens G,
Glöckner F-O,
Amann R et al.
(2000)
Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization.
FEMS Microbiology Ecology
34:
4556.
|
|
|
Jurgens G,
Lindström K and
Saano A
(1997)
Novel group within the kingdom Crenarchaeota from boreal forest soil.
Applied and Environmental Microbiology
63:
803805.
|
|
|
Karner MB,
DeLong EF and
Karl DM
(2001)
Archaeal dominance in the mesopelagic zone of the Pacific Ocean.
Nature
409:
507510.
|
|
|
Kashefi K and
Lovley DR
(2003)
Extending the upper temperature limit for life.
Science
301:
934.
|
|
|
Kirchman DL,
Elifantz H,
Dittel AI,
Malmstrom RR and
Cottrell MT
(2007)
Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean.
Limnology & Oceanography
52:
495507.
|
|
|
Könneke M,
Bernhard AE,
de la Torré JR et al.
(2005)
Isolation of an autotrophic ammonia-oxidizing marine archaeon.
Nature
437:
543546.
|
|
|
López-García P,
Moreira D,
López-López A and
Rodríguez-Valera F
(2001)
A novel haloarchaeal related lineage is widely distributed in deep oceanic regions.
Environmental Microbiology
3:
7278.
|
|
|
Lösekann T,
Knittel K,
Nadalig T et al.
(2007)
Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.
Applied and Environmental Microbiology
73:
33483362.
|
|
|
Lovley DR,
Holmes DE and
Nevin KP
(2004)
Dissimilatory Fe(III) and Mn(IV) reduction.
Advances in Microbial Physiology
49:
219286.
|
|
|
Massana R,
DeLong EF and
Pedrós-Alió C
(2000)
A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces.
Applied and Environmental Microbiology
66:
17771787.
|
|
|
Massana R,
Murray AE,
Preston CM and
DeLong EF
(1997)
Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel.
Applied and Environmental Microbiology
63:
5056.
|
|
|
Munson MA,
Nedwell DB and
Embley TM
(1997)
Phylogenetic diversity of Archaea in sediment samples from a coastal marsh.
Applied and Environmental Microbiology
63:
47294733.
|
|
|
Orphan VJ,
House CH,
Hinrichs K-U,
McKeegan KD and
DeLong EF
(2002)
Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments.
Proceedings of the National Academy of Sciences of the USA
99:
76637688.
|
|
|
Ouverney CC and
Fuhrman JA
(2000)
Marine planktonic Archaea take up amino acids.
Applied and Environmental Microbiology
66:
48294833.
|
|
|
Pearson A,
McNichol AP,
Benitez-Nelson BC,
Hayes JM and
Eglington TI
(2001)
Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific 14C analysis.
Geochimica et Cosmochimica Acta
65:
31233137.
|
|
|
Preston CM,
Wu KY,
Molinski TF and
DeLong EF
(1996)
A psychrophilic crenarchaeon inhabits a marine sponge; Cenarchaeum symbiosum, gen nov. sp. nov.
Proceedings of the National Academy of Sciences of the USA
93:
62416246.
|
|
|
Schleper C,
Jurgens G and
Jonuscheit M
(2005)
Genomic studies of uncultivated archaea.
Nature Reviews Microbiology
3:
479488.
|
|
|
Takai K,
Oida H,
Suzuki Y et al.
(2004)
Spatial distribution of marine Crenarchaeota Group I in the vicinity of deep-sea hydrothermal systems.
Applied and Environmental Microbiology
70:
24042413.
|
|
|
Teske A,
Hinrichs K-U,
Edgcomb V et al.
(2002)
Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
Applied and Environmental Microbiology
68:
19942007.
|
|
|
Teske A and
Sørensen KB
(2008)
Uncultured archaea in deep marine subsurface sediments: have we caught them all?
The ISME Journal
2:
318.
|
|
|
Treusch AH,
Leininger S,
Kletzin A et al.
(2005)
Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.
Environmental Microbiology
7:
19851995.
|
|
|
Valentine DL
(2007)
Adaptations to energy stress dictate the ecology and evolution of the Archaea.
Nature Reviews Microbiology
5:
316323.
|
|
|
Valentine DL and
Reeburgh WS
(2000)
New perspectives on anaerobic methane oxidation.
Environmental Microbiology
2:
477484.
|
|
|
Vetriani C,
Jannasch HW,
MacGregor BJ,
Stahl DA and
Reysenbach AL
(1999)
Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments.
Applied and Environmental Microbiology
65:
43754384.
|
|
|
Woese CR and
Fox GE
(1977)
Phylogenetic structure of the prokaryotic domain: the primary kingdoms.
Proceedings of the National Academy of Sciences of the USA
74:
50885090.
|
|
|
Woese CR,
Kandler O and
Wheelis ML
(1990)
Towards a natural system of organisms: proposal for the domain Archaea, Bacteria, and Eucarya.
Proceedings of the National Academy of Sciences of the USA
87:
45764579.
|
|
|
Wuchter C,
Schouten S,
Boschker HTS and
Sinninghe Damsté JS
(2003)
Bicarbonate uptake by marine Crenarchaeota.
FEMS Microbiology Letters
219:
203207.
|
| Further Reading |
|
|
book
Blum P (ed.)
(2008)
Archaea: New Models for Prokaryotic Biology.
Cambridgeshire, UK: Caister Academic Press.
|
|
|
book
Cavicchioli R (ed.)
(2007)
Archaea: Molecular and Cellular Biology.
Washington, DC: American Society for Microbiology Press.
|
|
|
book
Garrett RA and
Klenk H-P (eds)
(2007)
Archaea: Evolution, Physiology, and Molecular Biology.
Hoboken, NJ: Wiley-Blackwell.
|
|
|
book
Garrity GM,
Boone DR and
Castenholz RW (eds)
(2001)
Bergey's Manual of Systematic Bacteriology, Volume One: Archaea and the Deeply Branching and Phototrophic Bacteria,
2nd edn.
New York, New York: Springer-Verlag.
|
|
|
book
Gunde-Cimerman N,
Oren A and
Plemenita A
(2005)
Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya.
New York, New York: Springer-Verlag.
|
|
|
book
Howland JL
(2000)
The Surprising Archaea: Discovering Another Domain of Life.
New York, New York: Oxford University Press.
|