References
Abdel‐Rahman
MA
,
Omran
MA
,
Abdel‐Nabi
IM
,
Ueda
H
and
McVean
A
(2009) Intraspecific variation in the Egyptian scorpion Scorpio maurus palmatus venom collected from different biotopes. Toxicon
53 (3): 349–359. 10.1016/j.toxicon.2008.12.007.
Barlow
A
,
Pook
CE
,
Harrison
RA
and
Wuster
W
(2009) Coevolution of diet and prey‐specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society B: Biological Sciences
276 (1666): 2443–2449. http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.2009.0048.
Benkhadir
K
,
Kharrat
R
,
Cestèle
S
, et al. (2004) Molecular cloning and functional expression of the alpha‐scorpion toxin BotIII: pivotal role of the C‐terminal region for its interaction with voltage‐dependent sodium channels. Peptides
25 (2): 151–161.
Benoit
J
,
Norton
LA
,
Manger
PR
and
Rubidge
BS
(2017) Reappraisal of the envenoming capacity of Euchambersia mirabilis (Therapsida, Therocephalia) using μCT‐scanning techniques. PLoS One
12 (2): e0172047. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172047.
Bourgeois
M
(1961) Atractaspis–a misfit among the Viperidae. News Bulletin of the Zoological Society of South Africa
3: 29.
Brust
A
,
Sunagar
K
,
Undheim
EAB
, et al. (2013) Differential evolution and neofunctionalization of snake venom metalloprotease domains. Molecular & Cellular Proteomics
12 (3): 651–663. http://www.mcponline.org/content/12/3/651.full.
Casewell
NR
,
Wüster
W
,
Vonk
FJ
,
Harrison
RA
and
Fry
BG
(2013) Complex cocktails: the evolutionary novelty of venoms. Trends in Ecology & Evolution
28 (4): 219–229.
Casewell
NR
,
Visser
JC
,
Baumann
K
, et al. (2017) The evolution of fangs, venom, and mimicry systems in blenny fishes. Current Biology
27 (8): 1184–1191. http://www.venomdoc.com/s/2017‐Fang‐blenny.pdf.
Clarke
BT
(1997) The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological Reviews
72 (3): 365–379. https://www.cambridge.org/core/journals/biological‐reviews/article/the‐natural‐history‐of‐amphibian‐skin‐secretions‐their‐normal‐functioning‐and‐potential‐medical‐applications/B7F478B74B87845930279EDBFD8E4EB2.
Craig
AG
,
Bandyopadhyay
and
Olivera
BM
(1999) Post‐translationally modified neuropeptides from Conus venoms. European Journal of Biochemistry
264 (2): 271–275.
Owen
MD
and
Sloley
BD
(1988) 5‐Hydroxytryptamine in the venom of the honey bee (Apis mellifera L.): variation with season and with insect age. Toxicon
26 (6): 577–581.
Dugon
MM
and
Arthur
W
(2012) Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda). Journal of Insect Physiology
58 (6): 874–880. http://www.sciencedirect.com/science/article/pii/S0022191012000789.
Durban
J
,
Juárez
P
,
Angulo
Y
, et al. (2011) Profiling the venom gland transcriptomes of Costa Rican snakes by 454 pyrosequencing. BMC Genomics
12 (1): 259. http://bmcgenomics.biomedcentral.com/articles/10.1186/1471‐2164‐12‐259.
Dutertre
S
,
Jin
A‐H
,
Vetter
I
, et al. (2014) Evolution of separate predation‐ and defence‐evoked venoms in carnivorous cone snails. Nature Communications
5: 3521. http://www.nature.com/doifinder/10.1038/ncomms4521.
Earl
STH
,
Birrell
GW
,
Wallis
TP
, et al. (2006) Post‐translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics
6 (24): 6554–6565.
Fauchald
K
and
Jumars
PA
(1979) The Diet of Worms: A Study of Polychaete Feeding Guilds, vol. 17. Aberdeen University Press. https://www.researchgate.net/profile/Peter_Jumars/publication/255608624_The_Diet_of_Worms_A_Study_of_Polychaete_Feeding_Guilds/links/02e7e5371f8f32da46000000.pdf.
Fry
BG
,
Vidal
N
,
Norman
JA
, et al. (2006) Early evolution of the venom system in lizards and snakes. Nature
439 (7076): 584–588. http://www.nature.com/doifinder/10.1038/nature04328.
Fry
BG
,
Roelants
K
,
Champagne
D
, et al. (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual Review of Genomics and Human Genetics
10: 483–511. http://www.annualreviews.org/doi/full/10.1146/annurev.genom.9.081307.164356.
Fry
BG
,
Sunagar
K
,
Casewell
N
, et al. (2015) The origin and evolution of the Toxicofera reptile venom system. In:
Fry
BG
(ed) Venomous Reptiles and Their Toxins: Evolution, Pathophysiology and Biodiscovery, pp. 1–31. New York: Oxford University Press.
Huang
CC
,
Stricher
F
,
Martin
L
, et al. (2005) Scorpion‐toxin mimics of CD4 in complex with human immunodeficiency virus gp120: crystal structures, molecular mimicry, and neutralization breadth. Structure
13 (5): 755–768.
Inceoglu
B
,
Lango
J
,
Jing
J
, et al. (2003) One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proceedings of the National Academy of Sciences of the United States of America
100 (3): 922–927. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=298702&tool=pmcentrez&rendertype=abstract.
Jared
C
,
Mailho‐Fontana
PL
,
Antoniazzi
MM
, et al. (2015) Venomous frogs use heads as weapons. Current Biology
25 (16): 2166–2170. http://www.sciencedirect.com/science/article/pii/S0960982215007885.
Jouiaei
M
,
Sunagar
K
,
Federman Gross
A
, et al. (2015) Evolution of an ancient venom: recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Molecular Biology and Evolution
32 (6): 1598–1610.
Kasturiratne
A
,
Wickremasinghe
AR
,
de
Silva
N
, et al. (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine
5 (11): e218. http://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050218.
Low
DHW
,
Sunagar
K
,
Undheim
EAB
, et al. (2013) Dracula's children: molecular evolution of vampire bat venom. Journal of Proteomics
89: 95–111. 10.1016/j.jprot.2013.05.034.
Martinson
EO
,
Mrinalini
,
Kelkar
YD
, et al. (2017) The evolution of venom by co‐option of single‐copy genes. Current Biology
27 (13): 2007–2013.e8. 10.1016/j.cub.2017.05.032.
Miller
DW
,
Jones
AD
,
Goldston
JS
,
Rowe
MP
and
Rowe
AH
(2016) Sex differences in defensive behavior and venom of the striped bark scorpion Centruroides vittatus (Scorpiones: Buthidae). Integrative and Comparative Biology
56 (5): 1022–1031.
Nekaris
KAI
,
Moore
RS
,
Rode
EJ
and
Fry
BG
(2013) Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. Journal of Venomous Animals and Toxins Including Tropical Diseases
19 (1): 21. https://jvat.biomedcentral.com/articles/10.1186/1678‐9199‐19‐21.
Reyes‐Velasco
J
,
Card
DC
,
Andrew
AL
, et al. (2015) Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Molecular Biology and Evolution
32 (1): 173–183.
Rowe
AH
,
Xiao
Y
,
Rowe
MP
, et al. (2013) Voltage‐gated sodium channel in grasshopper mice defends against bark scorpion toxin. Science
342 (6157): 441–446.
Schmidtko
A
,
Lötsch
J
,
Freynhagen
R
and
Geisslinger
G
(2010) Ziconotide for treatment of severe chronic pain. The Lancet
375 (9725): 1569–1577. 10.1016/S0140-6736(10)60354-6.
Sheumack
DD
,
Howden
ME
,
Spence
I
and
Quinn
RJ
(1978) Maculotoxin: a neurotoxin from the venom glands of the octopus Hapalochlaena maculosa identified as tetrodotoxin. Science (New York, N.Y.)
199 (4325): 188–189. http://www.ncbi.nlm.nih.gov/pubmed/619451.
Smith
WL
and
Wheeler
WC
(2006) Venom evolution widespread in fishes: a phylogenetic road map for the bioprospecting of piscine venoms. Journal of Heredity
97 (3): 206–217. https://academic.oup.com/jhered/article/97/3/206/DQ532831.
Starcevic
A
and
Long
PF
(2013) Diversification of animal venom peptides – were jellyfish amongst the first combinatorial chemists?
ChemBioChem
14 (12): 1407–1409. http://onlinelibrary.wiley.com/doi/10.1002/cbic.201300305/abstract.
Sunagar
K
,
Jackson
TN
,
Undheim
EA
, et al. (2013) Three‐fingered RAVERs: rapid accumulation of variations in exposed residues of snake venom toxins. Toxins
5 (11): 2172–2208.
Sunagar
K
,
Undheim
EA
,
Scheib
H
, et al. (2014) Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. Journal of Proteomics
99: 68–83.
Sunagar
K
and
Moran
Y
(2015) The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genetics
11 (10): 1–20.
Sunagar
K
,
Casewell
NR
,
Varma
S
, et al. (2016) Deadly innovations: unraveling the molecular evolution of animal venoms. In:
Gopalakrishnakone
P
and
Calvete
JJ
(eds) Venom Genomics and Proteomics, pp. 1–27. Dordrecht: Springer.
Sunagar
K
,
Columbus‐Shenkar
Y
,
Fridrich
A
et al. (2017) Cell type‐specific expression profiling sheds light on the development of a peculiar neuron, housing a complex organelle. bioRxiv. Retrieved from http://biorxiv.org/content/early/2017/06/30/158063.abstract
Szaniawski
H
(2009) The earliest known venomous animals recognized among conodonts. Acta Palaeontologica Polonica
54 (4): 669–676. http://www.bioone.org/doi/full/10.4202/app.2009.0045.
Takasaki
C
,
Tamiya
N
,
Bdolah
A
, et al. (1988) Sarafotoxins S6: several isotoxins from Atractaspis engaddensis (burrowing asp) venom that affect the heart. Toxicon
26 (6): 543–548.
Terrat
Y
,
Sunagar
K
,
Fry
BG
, et al. (2013) Atractaspis aterrima toxins: The first insight into the molecular evolution of venom in side‐stabbers. Toxins
5 (11): pp. 1948–1964.
Vetrano
SJ
,
Lebowitz
JB
and
Marcus
S
(2002) Lionfish envenomation. The Journal of Emergency Medicine
23 (4): 379–382. http://www.sciencedirect.com/science/article/pii/S0736467902005723.
Watanabe
A
,
Nagai
H
,
Nagashima
Y
and
Shiomi
K
(2009) Structural characterization of plancitoxin I, a deoxyribonuclease II‐like lethal factor from the crown‐of‐thorns starfish Acanthaster planci, by expression in Chinese hamster ovary cells. Fisheries Science
75 (1): 225–231. https://link.springer.com/article/10.1007/s12562‐008‐0004‐x.
Whittington
CM
,
Papenfuss
A
,
Bansal
P
, et al. (2008) Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research
18 (6): 986–994. http://genome.cshlp.org/content/18/6/986.full.html.
Further Reading
Bücherl
W
,
Buckley
EE
and
Deulofeu
V
(eds) (2013) Venomous Animals and Their Venoms: Venomous Vertebrates. Amsterdam, Netherlands: Elsevier.
Fry
BG
,
Koludarov
I
,
Jackson
TNW
, et al. (2015) Seeing the woods for the trees: understanding venom evolution as a guide for biodiscovery. In:
King
GF
(ed) Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics, pp. 1–36. Cambridge, UK: The Royal Society of Chemistry.
Gopalakrishnakone
P
and
Calvete
JJ
(eds) (2016) Venom Genomics and Proteomics. Dordrecht: Springer.
Jenner
R
and
Undheim
E
(2017) The Secrets of Nature's Deadliest Weapon. CSIRO Publishing, ISBN: 9781486308378.
King
G
(ed) (2015) Venoms to Drugs: Venom as a Source for the Development of Human Therapeutics. London: Royal Society of Chemistry.
Mackessy
SP
(ed) (2016) Handbook of Venoms and Toxins of Reptiles. Florida, United States: CRC Press.
von
Reumont
BM
,
Campbell
LI
and
Jenner
RA
(2014) Quo Vadis Venomics? A roadmap to neglected venomous invertebrates. Toxins
6 (12): 3488–3551. http://www.mdpi.com/2072‐6651/6/12/3488.
Shiomi
K
,
Midorikawa
S
,
Ishida
M
,
Nagashima
Y
and
Nagai
H
(2004) Plancitoxins, lethal factors from the crown‐of‐thorns starfish Acanthaster planci, are deoxyribonucleases II. Toxicon
44 (5): 499–506. http://www.sciencedirect.com/science/article/pii/S004101010400282X.
Sues
H‐D
(1996) A reptilian tooth with apparent venom canals from the Chinle Group (Upper Triassic) of Arizona. Journal of Vertebrate Paleontology
16 (3): 571–572. http://www.tandfonline.com/doi/pdf/10.1080/02724634.1996.10011340.
Undheim
EAB
and
King
GF
(2011) On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon
57 (4): 512–524. http://www.sciencedirect.com/science/article/pii/S0041010111000092.
Williams
BL
(2010) Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Marine Drugs
8 (3): 381–398. http://www.mdpi.com/1660‐3397/8/3/381/htm.