References
Ancel P and
Vintemberger P
(1948)
Recherches sur le déterminisme de la symétrie bilatérale dans l'oeuf des amphibiens.
Bulletin Biólogique de France et de Belgique
(suppl. 31):
1–182.
Blythe SA,
Cha SW,
Tadjuidje E,
Heasman J and
Klein PS
(2010)
β‐Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2.
Developmental Cell
19:
220–231.
Cha SW,
Tadjuidje E,
Tao Q,
Wylie C and
Heasman J
(2008)
Wnt5a and Wnt11 interact in a maternal Dkk‐1 regulated fashion to activate both canonical and non‐canonical signaling in Xenopus axis formation.
Development
135:
3719–3729.
Elinson RP and
Kao KR
(1989)
The location of dorsal information in frog early development.
Development Growth and Differentiation
31:
423–430.
Elinson RP and
Rowning B
(1988)
A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso‐ventral axis.
Developmental Biology
128:
185–197.
Gotoh T,
Kishimoto T and
Sible JC
(2011)
Phosphorylation of claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition.
Developmental Biology
353:
302–308.
Heasman J,
Crawford A,
Goldstone K et al.
(1994)
Overexpression of cadherins and underexpression of β‐catenin inhibit dorsal mesoderm induction in early Xenopus embryos.
Cell
79:
791–803.
Keller RE
(1975)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. I. Prospective areas and morphogenetic movements of the superficial layer.
Developmental Biology
42:
222–241.
Keller RE
(1976)
Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep layer.
Developmental Biology
51:
118–137.
Keller RE
(1981)
An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis.
Journal of Experimental Zoology
216:
81–101.
Keller RE,
Danilchik M,
Gimlich R and
Shih J
(1985)
The function and mechanism of convergent extension during gastrulation of Xenopus laevis.
Journal of Embryology and Experimental Morphology
89(suppl.):
185–209.
Keller RE,
Shook D and
Skoglund P
(2008)
The forces that shape embryos: physical aspects of convergent extension by cell intercalation.
Physical Biology
5:
1–23.
Kofron M,
Demel T,
Xanthos J et al.
(1999)
Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFβ growth factors.
Development
126:
5759–5770.
Lemaire P,
Garrett N and
Gurdon JB
(1995)
Expression cloning of Siamois, a Xenopus homeobox gene expressed in dorsal‐vegetal cells of blastulae and able to induce a complete secondary axis.
Cell
81:
85–94.
Moody SA
(1987)
Fates of the blastomeres of the 32‐cell‐stage Xenopus embryo.
Developmental Biology
122:
300–319.
Newport J and
Kirschner M
(1982)
A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage.
Cell
30:
675–686.
Render J and
Elinson RP
(1986)
Axis determination in polyspermic Xenopus laevis eggs.
Developmental Biology
115:
425–433.
Scharf SR and
Gerhart JC
(1980)
Determination of the dorso‐ventral axis in eggs of Xenopus laevis: complete rescue of UV‐impaired eggs by oblique orientation before first cleavage.
Developmental Biology
79:
181–198.
Schneider S,
Steinbeisser H,
Warga RM and
Hausen P
(1996)
β‐Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos.
Mechanisms of Development
57:
191–198.
Signoret J and
Lefresne J
(1971)
Contribution a l'etude de la segmentation de l'oeuf d'axolotl. I. Definition de la transition blastuleenne.
Annales d’ Embryologie et de Morphogenese
2:
451–459.
Slack JMW,
Darlington BG,
Heath JK and
Godsave SF
(1987)
Mesoderm induction in early Xenopus embryos by heparin‐binding growth factors.
Nature
326:
197–200.
Spemann H and
Mangold H
(1924)
Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren (Translated by V Hamburger and published 2001).
International Journal of Developmental Biology
45:
13–38.
Sudarwati S and
Nieuwkoop PD
(1971)
Mesoderm formation in the anuran Xenopus laevis (Daudin).
Wilhelm Roux’ Archives
166:
189–204.
Tao Q,
Yokota C,
Puck H et al.
(2005)
Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos.
Cell
120:
857–871.
Vincent JP,
Oster GF and
Gerhart JC
(1986)
Kinematics of gray crescent formation in Xenopus eggs.
Developmental Biology
113:
484–500.
Winklbauer R and
Schurfeld M
(1999)
Vegetal rotation, a new gastrulation movement involved in the internalization of the mesoderm and endoderm in Xenopus.
Development
126:
3703–3713.
Zhang J and
King ML
(1996)
Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T‐box transcription factor involved in mesodermal patterning.
Development
122:
4119–4129.
Zhang J,
Houston DW,
King ML et al.
(1998)
The role of maternal VegT in establishing the primary germ layers in Xenopus embryos.
Cell
94:
515–524.
Further Reading
Davidson LA
(2008)
Integrating morphogenesis with underlying mechanics and cell biology.
Current Topics in Developmental Biology
81:
113–133.
http://www.xenbase.org
King ML,
Messitt TJ and
Mowry KL
(2005)
Putting RNAs in the right place at the right time: RNA localization in the frog oocytes.
Biology of the Cell
97:
19–33.
White JA and
Heasman J
(2008)
Maternal control of pattern formation in Xenopus laevis.
Journal of Experimental Zoology (Molecular and Developmental Evolution)
310B:
73–84.
Winklbauer R
(2009)
Cell adhesion in amphibian gastrulation.
International Review of Cell and Molecular Biology
278:
215–275.