Protist Evolution and Phylogeny

Abstract

The beginning of this century brought spectacular changes in our understanding of eukaryote phylogeny, especially the early evolution of microeukaryotic lineages commonly called protists. Phylogenomic studies based on analysis of more than 200 genes produced a relatively well‐resolved tree of eukaryotes. Metagenetic studies using environmental deoxyribonucleic acid (eDNA) revealed an extraordinary diversity of protist lineages, highlighting their great ecological and evolutionary importance. A new higher level classification of eukaryotes combining the results of microscopic and various ‘omics’ studies has been proposed. In this classification, the majority of eukaryotes are placed in seven monophyletic supergroups: Amoebozoa, Opisthokonta, Archaeplastida, Alveolata, Stramenopiles, Rhizaria and Excavata. Phylogenetic relationships between these supergroups and 11 independent eukaryotic lineages are relatively well established. However, there is no consensus concerning the position of the root of eukaryotic tree. Further single‐cell microscopic and genomic studies are also necessary for exploring the extraordinary diversity of protistan phyla revealed by the eDNA surveys.

Key Concepts:

  • Molecular phylogenies drastically changed our understanding of eukaryotes evolution.

  • Phylogenomic data are essential for reconstructing the deep relationships of eukaryotes.

  • Ribosomal phylogenies are useful for inferring relationships within protistan phyla and for species identification.

  • Current protist classification comprises 4–7 supergroups and a few independent lineages.

  • Important part of protist diversity has been uncovered by environmental DNA study.

Keywords: phylogenomics; metagenetics; protists; microeukaryotes; unicellular eukaryotes; protozoa; eukaryotes classification; ribosomal phylogenies

Figure 1.

Phylogenomic tree of eukaryotes. Modified after the analysis of 258 genes by Burki et al. () and other recent publications.

close

References

Adl SM, Simpson AG, Lane CE et al. (2012) The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59: 429–493.

Baldauf SL (2003) The deep roots of eukaryotes. Science 300(5626): 1703–1706.

Baldauf SL, Roger AJ, Wenk‐Siefert I and Doolittle WF (2000) A kingdom‐level phylogeny of eukaryotes based on combined protein data. Science 290(5493): 972–977.

Bass D and Cavalier‐Smith T (2004) Phylum‐specific environmental DNA analysis reveals remarkably high global biodiversity of Cercozoa (Protozoa). International Journal of Systematic and Evolutionary Microbiology 54: 2393–2404.

Bass D, Moreira D, Lopez‐Garcia P et al. (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156: 149–161.

Berney C, Fahrni J and Pawlowski J (2004) How many novel eukaryotic “kingdoms”? Pitfalls and limitations of environmental DNA surveys. BMC Biology 2: 13.

Burki F, Inagaki Y, Brate J et al. (2009) Early evolution of eukaryotes: two enigmatic heterotrophic groups are related to photosynthetic chromalveolates. Genome Biology and Evolution 1: 231–238.

Burki F, Kudryavtsev A, Matz MW et al. (2010) Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evolutionary Biology 10: 377.

Burki F, Okamoto N, Pombert JF and Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proceedings of the Royal Society B: Biological Sciences 279: 2246–2254.

Burki F, Shalchian‐Tabrizi K, Minge MA et al. (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS One 2: e790.

Burki F, Shalchian‐Tabrizi K and Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Letters 4: 366–369.

Cavalier‐Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiological Reviews 57: 953–994.

Cavalier‐Smith T (1998) A revised six‐kingdom system of life. Biological Reviews 73: 203–266.

Cavalier‐Smith T and Chao EEY (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358.

Cavalier‐Smith T (2010) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biological Letters 6(3) :342–345.

Cavalier‐Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology 52: 297–354.

Curtis BA, Tanifuji G, Burki F et al. (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492(7427): 59–65.

Derelle R and Lang BF (2012) Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Molecular Biology and Evolution 29(4): 1277–1289.

Deschamps P and Moreira D (2009) Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Molecular Biology and Evolution 26(12): 2745–2753.

Fiore‐Donno AM, Nikolaev SI, Nelson M et al. (2010) Deep phylogeny and evolution of slime moulds (mycetozoa). Protist 161(1): 55–70.

Guillou L, Bachar D, Audic S et al. (2012) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub‐Unit rRNA sequences with curated taxonomy. Nucleic Acids Research 41: D597–D604.

Hampl V, Hug LA, Leigh JW et al. (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proceedings of the National Academy of Sciences of the USA 106: 3859–3864.

Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. Journal of Eukaryotic Microbiology 56(1): 1–8.

Kim E, Harrison JW, Sudek S et al. (2011) Newly identified and diverse plastid‐bearing branch on the eukaryotic tree of life. Proceedings of the National Academy of Sciences of the USA 108: 1496–1500.

Lara E, Moreira D and López‐García P (2010) The environmental clade LKM11 and Rozella form the deepest branching clade of fungi. Protist 161(1): 116–121.

Logares R, Audic S, Santini S et al. (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME Journal 6: 1823–1833.

Minge MA, Silberman JD, Orr RJ et al. (2009) Evolutionary position of breviate amoebae and the primary eukaryote divergence. Philosophical Transactions of Royal Society London B: Biological Sciences 276: 597–604.

Moreira D and Lopez‐Garcia P (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends in Microbiology 10: 31–38.

Nikolaev SI, Berney C, Fahrni J et al. (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proceedings of the National Academy of Sciences of the USA 101: 8066–8071.

Not F, Valentin K, Romari K et al. (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryotes. Science 315: 253–255.

Okamoto N, Chantangsi C, Horák A, Leander BS and Keeling PJ (2009) Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One 4: e7080.

Pace NR, Olsen GJ and Woese CR (1986) Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Current Biology 45: 325–326.

Parfrey LW, Barbero E, Lasser E et al. (2006) Evaluating support for the current classification of eukaryotic diversity. PLoS Genetics 2: e220.

Pawlowski J, Audic S, Adl S et al. (2012) CBOL Protist Working Group: Barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biology 10: e1001419.

Philippe H, Lopez P, Brinkmann H et al. (2000) Early‐branching or fast‐evolving eukaryotes? An answer based on slowly evolving positions. Proceedings of the Royal Society of London: Series B 267: 1213–1221.

Polet S, Berney C, Fahrni J and Pawlowski J (2004) Small subunit ribosomal RNA sequences of Phaeodarea challenge the monophyly of Haeckel's Radiolaria. Protist 155: 53–63.

Rodríguez‐Ezpeleta N, Brinkmann H, Burey SC et al. (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Current Biology 15(14): 1325–1330.

Rodríguez‐Ezpeleta N, Brinkmann H, Roure B et al. (2007) Detecting and overcoming systematic errors in genome‐scale phylogenies. Systematic Biology 56: 389–399.

Seenivasan R, Sausen N, Medlin LK and Melkonian M (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’. PLoS One 8(3): e59565.

Shadwick LL, Spiegel FW, Shadwick JD, Brown MW and Silberman JD (2009) Eumycetozoa=Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS One 4(8): e6754.

Sierra R, Matz MV, Aglyamova G et al. (2013) Deep relationships of Rhizaria revealed by phylogenomics: a farewell to Haeckel's Radiolaria. Molecular Phylogenetics and Evolution 67: 53–59.

Simpson AG, Inagaki Y and Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and Evolution 23(3): 615–625.

Simpson AG and Roger AJ (2002) Eukaryotic evolution: getting to the root of the problem. Current Biology 12(20): R691–R693.

Smirnov AV, Chao E, Nassonova ES and Cavalier‐Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: lobosa). Protist 162(4): 545–570.

Sogin ML (1991) Early evolution and the origin of eukaryotes. Current Opinion in Genetics & Development 1: 457–463.

Stechmann A and Cavalier‐Smith T (2003) The root of the eukaryote tree pinpointed. Current Biology 13(17): R665–R666.

Steenkamp ET, Wright J and Baldauf SL (2006) The protistan origins of animals and fungi. Molecular Biology and Evolution 23(1): 93–106.

Suga H, Chen Z, de Mendoza A et al. (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nature Communications 4: 2325.

Yabuki A, Ishida K and Cavalier‐Smith T (2013) Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist 164(1): 75–88.

Yoon HS, Price DC, Stepanauskas R et al. (2011) Single‐cell genomics reveals organismal interactions in uncultivated marine protists. Science 332: 714–717.

Zhao S, Burki F, Bråte J et al. (2012) Collodictyon – an ancient lineage in the tree of eukaryotes. Molecular Biology and Evolution 29: 1557–1568.

Further Reading

Adl SM, Leander BS, Simpson AGB et al. (2007) Diversity, nomenclature and taxonomy of protists. Systematic Biology 56: 684–689.

Archibald JM (2009) The puzzle of plastid evolution. Current Biology 19: R81–R88.

Delsuc F, Brinkmann H and Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nature Genetics 6: 361–375.

Katz LA and Bhattacharya D (eds) (2006) Genomics and Evolution of Microbial Eukaryotes. NY, USA: Oxford University Press.

Keeling PJ, Burger G, Durnford DG et al. (2005) The tree of eukaryotes. Trends in Ecology & Evolution 20: 670–676.

Massana R (2011) Eukaryotic picoplankton in surface oceans. Annual Review of Microbiology 65: 91–110.

Pawlowski J (2013) The new microkingdoms of eukaryotes. BMC Biology 11: 40.

Pawlowski J and Burki F (2009) Untangling the phylogeny of amoeboid protists. Journal of Eukaryotic Microbiology 56: 16–25.

Roger A and Simpson AGB (2009) Evolution: revisiting the root of the eukaryotic tree. Current Biology 2009: R165–R167.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Pawlowski, Jan(Mar 2014) Protist Evolution and Phylogeny. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0001935.pub2]