Chlorarachniophytes

Abstract

Chlorarachniophytes are marine unicellular algae that live widely in the coastal and oceanic waters of temperate to tropical zone. They possess green plastids (chloroplasts) that have originated from a green algal endosymbiont via a secondary endosymbiosis. The plastid is accompanied by a reduced nucleus of the endosymbiont, called a nucleomorph, which still contains a highly reduced and compacted eukaryotic genome.

Keywords: algae; Cercozoa; Chlorarachniophyceae; nucleomorph; secondary endosymbiosis

Figure 1.

Three types of chlorarachniophyte cell: (a) amoeboid cells of Lotharella amoebiformis, (b) coccoid cells of Lotharella vacuolata and (c, d) flagellate cells of Bigelowiella longifila. F, flagellum; P, plastid; Fp, filopodium and N, nucleus.

Figure 2.

Transmission electron micrograph of a chlorarachniophyte cell. P, plastid; M, mitochondrion; N, nucleus and Py, pyrenoid.

Figure 3.

Three examples of chlorarachniophyte life cycles. (a) Life cycle of Lotharella vacuolata. (b) Life cycle of Bigelowiella longifila. (c) Life cycle of Lotharella globosa. A, amoeboid cell; C, coccoid cell; Cy, Cyst; DC, daughter cells; FC, flagellate cell (zoospore); VD, vegetative division and WA, walled amoeboid cell. Broken lines show predicted processes.

Figure 4.

Schematic drawing that explains the process of the primary and secondary endosymbioses. CB, cyanobacterium‐like organism; P, plastid; M, mitochondrion; N1, symbiont nucleus; N2, host nucleus and Nm, nucleomorph.

Figure 5.

Transmission electron micrograph of Lotharella sp., showing a plastid and a nucleomorph in the periplastidal compartment. Arrow indicates gap in the nucleomorph envelope membranes. Nm, nucleomorph; P, plastid and asterisk (*), periplastidal compartment.

close

References

Adl SM, Simpson AGB, Farmer MA et al. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52: 399–451.

Bass D, Moreira D, López‐García P et al. (2005) Polyubiquitin insertions and the phylogeny of Cercozoa and Rhizaria. Protist 156: 149–161.

Beutlich A and Schnetter R (1993) The life cycle of Cryptochlora perforans (Chlorarachniophyta). Botanica Acta 106: 441–447.

Calderon‐Saenz E and Schnetter R (1987) Cryptochlora perforans, a new genus and species of algae (Chlorarachniophyta), capable of penetrating dead algal filaments. Plant Systematics and Evolution 158: 69–71.

Cavalier‐Smith T (2004) Only six kingdoms of life. Proceedings of the Royal Society of London. Series B 271: 1251–1262.

Cavalier‐Smith T and Chao E‐Y (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154: 341–358.

Dietz C, Ehlers K, Wilhelm C, Gil‐Rodríguez MC and Schnetter R (2003) Lotharella polymorpha sp. nov. (Chlorarachniophyta) from the coast of Portugal. Phycologia 42: 582–593.

Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Archiv für Protistenkunde 69: 615–636.

Gilson PR and McFadden GI (1996) The miniaturized nuclear genome of a eukaryotic endosymbiont contains genes that overlap, genes that are cotranscribed, and the smallest known spliceosomal introns. Proceedings of the National Academy of Sciences of the USA 93: 7737–7742.

Gilson PR and McFadden GI (1999) Molecular, morphological and phylogenetic characterization of six chlorarachniophyte strains. Phycological Research 47: 7–19.

Gilson PR, Su V, Slamovits CH et al. (2006) Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Proceedings of the National Academy of Sciences of the USA 103: 9566–9571.

Grell KG (1990) Some light microscopic observations on Chlorarachnion reptans Geitler. Archiv für Protistenkunde 138: 271–290.

Hibberd DJ and Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). Journal of Phycology 20: 310–330.

Ishida K, Cao Y, Hasegawa M, Okada N and Hara Y (1997) The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF‐Tu. Journal of Molecular Evolution 45: 378–384.

Ishida K, Green BR and Cavalier‐Smith T (1999) Diversification of a chimaeric algal group, the chlorarachniophytes: phylogeny of nuclear and nucleomorph small‐subunit rRNA genes. Molecular Biology and Evolution 16: 321–331.

Ishida K and Hara Y (1994) Taxonomic studies on the Chlorarachniophyta. I. Chlorarachnion globosum sp. nov. Phycologia 33: 351–358.

Ishida K, Ishida N and Hara Y (2000) Lotharella amoeboformis sp. nov.: a new species of chlorarachniophytes from Japan. Phycological Research 48: 221–229.

Ishida K, Nakayama T and Hara Y (1996) Taxonomic studies on the Chlorarachniophyta. II. Generic delimitation of the chlorarachniophytes and description of Gymnochlora stellata gen. et sp. nov. and Lotharella gen. nov. Phycological Research 44: 37–45.

Ishida K, Yabuki A and Ota S (2007) The chlorarachniophytes: evolution and classification. In: Brodie J and Lewis J (eds) Unravelling the Algae: The Past, Present, and Future of Algal Systematics, pp. 171–182. Boca Raton, FL: CRC Press.

Keeling PJ, Deane JA and McFadden GI (1998) The phylogenetic position of alpha‐ and beta‐tubulins from the Chlorarachnion host and Cercomonas (Cercozoa). Journal of Eukaryotic Microbiology 45: 561–570.

McFadden GI, Gilson PR, Hofmann CJB, Adcock GJ and Maier U‐G (1994) Evidence that an amoeba acquired a chloroplast by relating part of an engulfed eukaryotic alga. Proceedings of the National Academy of Sciences of the USA 91: 3690–3694.

McFadden GI, Gilson PR and Sims IM (1997) Preliminary characterization of carbohydrate stores from chlorarachniophytes (Division: Chlorarachniophyta). Phycological Research 45: 145–151.

Moestrup Ø and Sengco M (2001) Ultrastructural studies on Bigelowiella natans, gen. et sp. nov., a chlorarachniophyte flagellate. Journal of Phycology 37: 624–646.

Norris RE (1967) Micro‐algae in enrichment cultures from Puerto Peñasco, Sonora, Mexico. Bulletin of the Southern California Academy of Sciences 66: 233–250.

Ota S, Ueda K and Ishida K (2005) Lotharella vacuolata sp. nov., a new species of chlorarachniophyte algae, and time‐lapse video observations on its unique post‐cell division behavior. Phycological Research 53: 275–286.

Ota S, Ueda K and Ishida K (2007a) Taxonomic study of Bigelowiella longifila sp. nov. (Chlorarachniophyta) and a time‐lapse video observation on the unique migration of amoeboid cells. Journal of Phycology 43: 333–343.

Ota S, Ueda K and Ishida K (2007b) Norrisiella sphaerica gen. et sp. nov., a new coccoid chlorarachniophyte from Baja California, Mexico. Journal of Plant Research 120: 661–670.

Rogers MB, Gilson PR, Su V, McFadden GI and Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts. Molecular Biology and Evolution 24: 54–62.

Silver TD, Koike S, Yabuki A et al. (2007) Phylogeny and nucleomorph karyotype diversity of chlorarachniophyte algae. Journal of Eukaryotic Microbiology 54: 403–410.

Further Reading

Pickett‐Heaps JD and Pickett‐Heaps J (2006) The Kingdom Protista: The Dazzling World of Living Cells. Australia: Cytographics [DVD].

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Ota, Shuhei, and Ishida, Ken‐ichiro(Apr 2008) Chlorarachniophytes. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0003060.pub2]