Control of Plant Organ Size


Lateral aerial organs are produced from the primordia initiated in the shoot apical meristem. Early stages of lateral organ growth require cell division and a sharp transition occurs late in development towards a cell expansion‐based growth. A current hypothesis indicates that cytokinin signalling in meristematic cells is downregulated to allow differentiation. Increased local auxin levels promoting growth accompany this event. The later stage coincides with jasmonic acid signalling required for flower maturarion. Within one organism, lateral organs of the same type can change in size and shape during ontogeny, a feature called heteroblasty. The developmental programme leading to final organ size may be modulated by environmental cues including photoperiod, temperature and abiotic stress. These environmental signals are integrated into the morphogenetic programme allowing better adaptation as a result of developmental plasticity.

Key Concepts:

  • Initial growth of lateral organs requires the downregulation of cytokinins allowing morphogenesis and differentiation.

  • Early developmental stages are characterised by cell division, whereas later stages show a rapid transition to growth caused by cell expansion.

  • There seems to be a compensation mechanism at the organ size level allowing increased cell expansion when cell division is compromised and vice versa, giving as a result lower organ size variation.

  • A given species may develop lateral organs differing in size and shape during development, a phenomenon called heteroblasty. A coordination between a basic growth programme and the timing of organ formation seems to be responsible for this phenomenon.

  • Plant organ size is the result of an underlying genetic programme and the interaction with environmental conditions that fine tune the final size of an organ.

Keywords: organ size; proliferation; expansion; Arabidopsis; heteroblasty; auxin; jasmonic acid; miRNA; environment

Figure 1.

An example of genetic control of floral size. (a) A plena mutant and (b) a plena, formosa double mutant. See Delgado‐Benarroch et al. for details.

Figure 2.

A diagram representing different steps in lateral organ growth and some environmental cues that affect lateral organ growth.



Achard P, Gong F, Cheminant S et al. (2008) The cold‐inducible CBF1 factor‐dependent signaling pathway modulates the accumulation of the growth‐repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20(8): 2117–2129. doi:10.1105/Tpc.108.058941.

Achard P, Herr A, Baulcombe DC and Harberd NP (2004) Modulation of floral development by a gibberellin‐regulated microRNA. Development (Cambridge, England) 131(14): 3357–3365. doi:10.1242/dev.01206.

Allen RS, Li J, Stahle MI et al. (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proceedings of the National Academy of Sciences of the USA 104(41): 16371–16376. doi:10.1073/pnas.0707653104.

Alves AAC and Setter TL (2004) Response of Cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Annals of Botany 94(4): 605–613. doi:10.1093/aob/mch179

Anastasiou E, Kenz S, Gerstung M et al. (2007) Control of plant organ size by KLUH/CYP78A5‐dependent intercellular signaling. Developmental Cell 13: 843–856.

Andriankaja M, Dhondt S, De Bodt S et al. (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not‐so‐gradual process. Developmental Cell 22(1): 64–78. doi:10.1016/j.devcel.2011.11.011.

Bey M, Stuber K, Fellenberg K et al. (2004) Characterization of Antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS. Plant Cell 16(12): 3197–3215.

Bradley D, Vincent C, Carpenter R and Coen E (1996) Pathways for inflorescence and floral induction in Antirrhinum. Development 122(5): 1535–1544.

Brioudes F, Joly C, Szécsi J et al. (2009) Jasmonate controls late development stages of petal growth in Arabidopsis thaliana. Plant Journal: For Cell and Molecular Biology 60(6): 1070–1080. doi:10.1111/j.1365‐313X.2009.04023.x.

Costa MMR, Yang S, Critechley J et al. (2012) The genetic basis for natural variation in heteroblasty in Antirrhinum. New Phytologist 196(4): 1251–1259.

Crawford BCW, Nath U, Carpenter R and Coen ES (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiology 135(1): 244–253. doi:10.1104/pp.103.036368.

Delgado‐Benarroch L, Causier B, Weiss J and Egea‐Cortines M (2009a) FORMOSA controls cell division and expansion during floral development in Antirrhinum majus. Planta 229(6): 1219–1229. Retrieved from

Delgado‐Benarroch L, Weiss J and Egea‐Cortines M (2009b) The mutants compacta ähnlich, Nitida and Grandiflora define developmental compartments and a compensation mechanism in floral development in Antirrhinum majus. Journal of Plant Research 122(5): 559–569. Retrieved from

Delgado‐Benarroch L, Weiss J and Egea‐Cortines M (2009c) Floral organ size control: interplay between organ identity, developmental compartments and compensation mechanisms. Plant Signaling Behavior 4(9): 814–817. Retrieved from

Deprost D, Yao L, Sormani R et al. (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Reports 8(9): 864–870. doi:10.1038/sj.embor.7401043.

Dinneny JR, Weigel D and Yanofsky MF (2006) NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development (Cambridge, England) 133(9): 1645–1655. doi:10.1242/dev.02335.

Disch S, Anastasiou E, Sharma VK et al. (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage‐dependent manner. Current Biology 16(3): 272–279. doi:10.1016/j.cub.2005.12.026.

Dupuy L, Gregory PJ and Bengough AG (2010) Root growth models: towards a new generation of continuous approaches. Journal of Experimental Botany 61(8): 2131–2143.

Egea‐Cortines M, Ruíz‐Ramón F and Weiss J (2013) Circadian regulation of horticultural traits: integration of environmental signals in plants. In: Janick J (ed.) Horticultural Reviews, vol. 41, pp 1–46. Wiley.

Eriksson S, Stransfeld L, Adamski NM, Breuninger H and Lenhard M (2010) KLUH/CYP78A5‐dependent growth signaling coordinates floral organ growth in Arabidopsis. Current Biology 20(6): 527–532. doi:10.1016/j.cub.2010.01.039.

Ferjani A, Horiguchi G, Yano S and Tsukaya H (2007) Analysis of leaf development in fugu mutants of Arabidopsis reveals three compensation modes that modulate cell expansion in determinate organs. Plant Physiology 144(2): 988–999.

Gendreau E, Hofte H, Grandjean O, Brown S and Traas J (1998) Phytochrome controls the number of endoreduplication cycles in the Arabidopsis thaliana hypocotyl. Plant Journal 13(2): 221–230.

Gómez‐Mena C, De Folter S, Costa MMR, Angenent GC and Sablowski R (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development (Cambridge, England) 132(3): 429–438. doi:10.1242/dev.01600.

Hemerly A, Engler J, Bergounioux C et al. (1995) Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO Journal 14(16): 3925–3936.

Horiguchi G, Kim G‐T and Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant Journal: For Cell and Molecular Biology 43(1): 68–78. doi:10.1111/j.1365‐313X.2005.02429.x.

Horváth BM, Magyar Z, Zhang Y et al. (2006) EBP1 regulates organ size through cell growth and proliferation in plants. EMBO Journal 25(20): 4909–4920. doi:10.1038/sj.emboj.7601362.

Hu Y, Poh HM and Chua N‐H (2006) The Arabidopsis ARGOS‐LIKE gene regulates cell expansion during organ growth. Plant Journal: For Cell And Molecular Biology 47(1): 1–9. doi:10.1111/j.1365‐313X.2006.02750.x.

Hu Y, Xie Q and Chua N-H (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. The Plant Cell 15(9): 1951–1961.

Hunter C, Willmann MR, Wu G et al. (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133(15): 2973–2981.

Husaineid SSH, Kok RA, Schreuder MEL et al. (2007) Overexpression of homologous phytochrome genes in tomato: exploring the limits in photoperception. Journal of Experimental Botany 58(3): 615–626. doi:10.1093/jxb/erl253.

Ishiguro S (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, Anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13(10): 2191–2209. doi:10.1105/tpc.13.10.2191.

Kaplan DR and Hagemann W (1991) The relationship of cell and organism in vascular plants. Bioscience 41(10): 693–703.

Kaufmann K, Muino JM, Jauregui R et al. (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biology 7(4): 854–875. doi:Artn E1000090 doi:10.1371/Journal.Pbio.1000090.

Kazama T, Ichihashi Y, Murata S and Tsukaya H (2010) The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5‐dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant and Cell Physiology 51(6): 1046–1054. doi:10.1093/Pcp/Pcq051.

Kim JH, Choi D and Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant Journal: For Cell and Molecular Biology 36(1): 94–104. Retrieved from

Laitinen RAE, Immanen J, Auvinen P et al. (2005) Analysis of the floral transcriptome uncovers new regulators of organ determination and gene families related to flower organ differentiation in Gerbera hybrida (Asteraceae). Genome Research 15(4): 475–486.

Lau OS and Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology 13(5): 571–577. doi:10.1016/j.pbi.2010.07.001.

Laux T and Mayer KFX (1998) Cell fate regulation in the shoot meristem. Seminars in Cell and Developmental Biology 9(2): 195–200.

Li J, Sima W, Ouyang B et al. (2012) Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany 63(18): 6407–6420. doi:10.1093/jxb/ers295.

Li Y, Zheng L, Corke F, Smith C and Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes and Development 22(10): 1331–1336. doi:10.1101/gad.463608.

Lord E (1979) The development of cleistogamous and chasmogamous flowers in Lamium amplexicaule (Labiatae): an example of heteroblastic inflorescence development. Botanical Gazette 1490(1): 39–50.

Manchado‐Rojo M, Delgado‐Benarroch L, Roca MJ, Weiss J and Egea‐Cortines M (2012) Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function. Plant Journal: For Cell and Molecular Biology 72(2): 294–307. doi:10.1111/j.1365‐313X.2012.05080.x.

McClung CR (2001) Circadian rhythms in plants. Annual Review of Plant Physiology and Plant Molecular Biology 52: 139.

Menand B, Desnos T, Nussaume L et al. (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proceedings of the National Academy of Sciences of the USA 99(9): 6422–6427. doi:10.1073/pnas.092141899.

Mizukami Y and Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences of the USA 97(2): 942–947. Retrieved from

Nag A, King S and Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 106(52): 22534–22539. doi:10.1073/pnas.0908718106.

Nagpal P, Ellis CM, Weber H et al. (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18): 4107–4118.

Nath U, Crawford BCW, Carpenter R and Coen E (2003) Genetic control of surface curvature. Science (New York) 299(5611): 1404–1407. doi:10.1126/science.1079354.

Ramirez‐Parra E, López‐Matas MA, Fründt C and Gutierrez C (2004) Role of an atypical E2F transcription factor in the control of Arabidopsis cell growth and differentiation. Plant Cell 16(9): 2350–2363. doi:10.1105/tpc.104.023978.

Reale L, Porceddu A, Lanfaloni L et al. (2002) Patterns of cell division and expansion in developing petals of Petunia hybrida. Sexual Plant Reproduction 15(3): 123–132.

Reeves PH, Ellis CM, Ploense SE et al. (2012) A regulatory network for coordinated flower maturation. In: Yanofsky MF (ed.) PLoS Genetics, 8(2): e1002506. doi:10.1371/journal.pgen.1002506.

Reinhardt D, Mandel T and Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12(4): 507–518.

Ren M, Venglat P, Qiu S et al. (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24(12): 4850–4874. doi:10.1105/tpc.112.107144.

Rodriguez RE, Mecchia MA, Debernardi JM et al. (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development (Cambridge, England) 137(1): 103–112. doi:10.1242/dev.043067.

Sanders PM (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12(7): 1041–1062. doi:10.1105/tpc.12.7.1041.

Schiessl K, Kausika S, Southam P, Bush M and Sablowski R (2012) JAGGED controls growth anisotropyand coordination between cell size and cell cycle during plant organogenesis. Current Biology 22(19): 1739–1746. doi:10.1016/j.cub.2012.07.020.

Schruff MC, Spielman M, Tiwari S et al. (2006) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development (Cambridge, England) 133(2): 251–261. doi:10.1242/dev.02194.

Sharp RE (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. Journal of Experimental Botany 51(350): 1575–1584. doi:10.1093/jexbot/51.350.1575.

Sharp RE and LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. Journal of Experimental Botany 53(366): 33–37.

Shpak ED, Berthiaume CT, Hill EJ and Torii KU (2004) Synergistic interaction of three ERECTA‐family receptor‐like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development (Cambridge, England) 131(7): 1491–1501. doi:10.1242/dev.01028.

Skirycz A, Claeys H, De Bodt S et al. (2011). Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest. The Plant Cell 23(5): 1876–1888.

Sugimoto‐Shirasu K and Roberts K (2003) “Big it up”: endoreduplication and cell‐size control in plants. Current Opinion in Plant Biology 6(6): 544–553. doi:10.1016/j.pbi.2003.09.009.

Sugimoto‐Shirasu K, Stacey NJ, Corsar J, Roberts K and McCann MC (2002) DNA topoisomerase VI is essential for endoreduplication in Arabidopsis. Current Biology 12(20): 1782–1786. Retrieved from

Sylvester AW, Parker‐Clark V and Murray GA (2001) Leaf shape and anatomy as indicators of phase change in the grasses: comparison of maize, rice, and bluegrass. American Journal of Botany 88(12): 2157–2167. Retrieved from

Szécsi J, Joly C, Bordji K et al. (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO Journal 25(16): 3912–3920. doi:10.1038/sj.emboj.7601270.

Tabata R, Ikezaki M, Fujibe T et al. (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology 51(1): 164–175. doi:10.1093/pcp/pcp176.

Thiele A, Herold M, Lenk I, Quail PH and Gatz C (1999) Heterologous expression of Arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development. Plant Physiology 120(1): 73–82.

Truernit E and Haseloff J (2008) Arabidopsis thaliana outer ovule integument morphogenesis: ectopic expression of KNAT1 reveals a compensation mechanism. BMC Plant Biology 8: 35.

Tsukaya H (2002) The leaf index: heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant and Cell Physiology 43(4): 372–378.

Tsukaya H, Shoda K, Kim GT and Uchimiya H (2000) Heteroblasty in Arabidopsis thaliana (L.) Heynh. Planta 210(4): 536–542. Retrieved from

Uchida N, Lee JS, Horst RJ et al. (2012) Regulation of inflorescence architecture by intertissue layer ligand‐receptor communication between endodermis and phloem. Proceedings of the National Academy of Sciences of the USA 109(16): 6337–6342. doi:10.1073/pnas.1117537109.

Usami T, Horiguchi G, Yano S and Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN‐LIKE genes in the control of heteroblasty. Development 136(6): 955–964. doi:dev.028613 [pii] 10.1242/dev.028613.

Varaud E, Brioudes F, Szecsi J et al. (2011) AUXIN RESPONSE FACTOR8 regulates Arabidopsis petal growth by interacting with the bHLH transcription factor BIGPETALp. Plant Cell 23(3): 973–983. doi:10.1105/Tpc.110.081653.

Wagner D, Tepperman JM and Quail PH (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3(12): 1275–1288. doi:10.1105/tpc.3.12.1275.

Wang L, Hua D, He J et al. (2011) Auxin Response Factor2 ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genetics 7(7): e1002172. doi:10.1371/journal.pgen.1002172.

White DWR (2006) PEAPOD regulates lamina size and curvature in Arabidopsis. Proceedings of the National Academy of Sciences of the USA 103(35): 13238–13243. doi:10.1073/pnas.0604349103.

Wu M‐F, Tian Q and Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development (Cambridge, England) 133(21): 4211–4218. doi:10.1242/dev.02602.

Wullschleger S, Loewith R and Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3): 471–484. doi:10.1016/j.cell.2006.01.016.

Yanai O, Shani E, Dolezal K et al. (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology 15(17): 1566–1571.

Yang L, Conway SR and Poethig RS (2011) Vegetative phase change is mediated by a leaf‐derived signal that represses the transcription of miR156. Development 138(2): 245–249. doi:10.1242/Dev.058578.

Yanovsky MJ, Alconada‐Magliano TM, Mazzella MA et al. (1998) Phytochrome A affects stem growth, anthocyanin synthesis, sucrose‐phosphate‐synthase activity and neighbour detection in sunlight‐grown potato. Planta 205(2): 235–241. doi:10.1007/s004250050316.

Zachgo S, Silva E, Motte P et al. (1995) Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature‐sensitive mutant. Development 121(9): 2861–2875.

Zenoni S, Reale L, Tornielli GB et al. (2004) Downregulation of the Petunia hybrida alpha‐expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs. Plant Cell 16(2): 295–308. doi:10.1105/tpc.018705.

Zotz G, Wilhelm K and Becker A (2011) Heteroblasty – a review. Botanical Review 77(2): 109–151. doi:10.1007/s12229‐010‐9062‐8.

Further Reading

Krizek BA and Anderson JT (2013) Control of flower size. Journal of Experimental Botany 64: 1427–1437.

Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. International Journal of Developmental Biology 49(5–6): 547–555.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Egea‐Cortines, Marcos, and Weiss, Julia(Sep 2013) Control of Plant Organ Size. In: eLS. John Wiley & Sons Ltd, Chichester. [doi: 10.1002/9780470015902.a0003363.pub2]