Euryarchaeota

Abstract

The Euryarchaeota, one of the phyla of the archaeal domain, consists of a physiologically and morphologically heterogeneous group of prokaryotes. As of July 2018, the Euryarchaeota consisted of 7 classes, 13 orders, 27 families, 107 genera and 522 species with validly published names (including synonyms). The methanogenic Archaea (4 classes) are obligate anaerobes that produce methane by reduction of carbon dioxide with hydrogen as the electron donor or from formate, acetate, methanol and methylated amines. The extremely halophilic class Halobacteria mainly consists of aerobic red‐pigmented chemoheterotrophs. The Thermococci, Archaeoglobi and Thermoplasmata contain many thermophiles and hyperthermophiles with chemoautotrophic or heterotrophic metabolism. Some are extremely acidophilic or thermoacidophilic. Some Euryarchaeota have a pseudomurein cell wall, others are surrounded by a protein S‐layer, while still others lack a cell wall. Cultivation‐independent studies have demonstrated the existence of additional groups of Euryarchaeota that are not yet represented by cultivated organisms.

Key Concepts

  • The Euryarchaeota phylum is one of the two major groups of Archaea with cultivated representatives.
  • The Euryarchaeota form a physiologically heterogeneous group and includes aerobes as well as anaerobes, chemoautotrophs as well as heterotrophs.
  • All known methanogenic and all extremely halophilic Archaea known belong to the Euryarchaeota phylum.
  • Many Euryarchaeota are extreme thermophiles.
  • Some Euryarchaeota are acidophilic or thermoacidophilic.
  • Recent discoveries show that the group of extremely halophilic Euryarchaeota is metabolically more diverse than what was earlier assumed.
  • Different types of cell walls have been identified in the Euryarchaeota, and some members lack a cell wall.
  • Cultivation‐independent approaches have shown that many types of yet‐uncultivated types of Euryarchaeota are found in marine and terrestrial ecosystems.

Keywords: archaea; taxonomy; hyperthermophiles; methanogens; sulfate reducers; halophiles

Figure 1. Schematic tree of the archaeal domain showing the position of the Euryarchaeota. Thin blue arrow: emergence of pseudomurein; large green arrow, introduction of DNA gyrase from Bacteria, pale blue ovals emphasise poorly resolved controversial nodes. The branch marked with the name of the class Halobacteria currently contains three orders: the Halobacteriales, the Haloferacales and the Natrialbales (Gupta et al., ). The recently proposed new class Methanonatronarchaeia with the order Methanonatronarchaeales (Sorokin et al., ) were not included in the figure. Source: https://www.frontiersin.org/articles/10.3389/fmicb.2015.00717/full. Licensed under CC by 4.0.
Figure 2. Thin section of a cell of Methanopyrus kandleri. Bar, 1 μm.
Figure 3. Electron micrograph of a shadow‐casted Pyrococcus furiosus cell with a tuft of flagella, shadowed with tantalum/tungsten. Bar, 1 μm.
close

References

Andrei A‐Ş, Banciu HL and Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiology Letters 330: 1–9.

Aouad M, Taib N, Oudart A, et al. (2018) Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Molecular Phylogenetics and Evolution 127: 46–54.

Baker BJ, Tyson GW, Webb RI, et al. (2006) Lineages of acidophilic archaea revealed by community genomic analysis. Science 314: 1933–1935.

Baker BJ, Comolli LR, Dick GJ, et al. (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proceedings of the National Academy of Sciences of the USA 107: 8806–8811.

Barns SM, Delwiche CF, Palmers JD and Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the USA 93: 9188–9193.

Boetius A, Ravenschlag K, Schubert CJ, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623–626.

Brochier C, Gribaldo S, Zivanovic Y, et al. (2005) Nanoarchaea: representatives of a noval archaeal phylum or a fast‐evolving euryarchaeal lineage related to the Themococcales? Genome Biology 6: R42.

Brochier‐Armanet C, Forterre P and Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Current Opinion in Microbiology 14: 274–281.

Bult CJ, White O, Olsen GJ, Zhou L and Fleischmann RD (1996) Complete genome sequence of the methanogenic archaeon Methanococcus jannaschii. Science 273: 1058–1072.

Chen L‐X, Méndez‐García C, Dombrowski N, et al. (2018) Metabolic versatility of small archaea Micrarchaeota and Parvarchaeota. The ISME Journal 12: 756–775.

De Rosa M and Gambacorta A (1994) Archaeal lipids. In: Goodfellow M and O'Donnell AG (eds) Chemical Methods in Procaryotic Systematics, pp 197–264. Wiley: Chichester, UK.

Dridi B, Fardeau M‐L, Ollivier B, et al. (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon from human feces. International Journal of Systematic and Evolutionary Microbiology 62: 1902–1907.

Falb M, Müller K, Königsmaier L, et al. (2008) Metabolism of halophilic archaea. Extremophiles 12: 177–196.

Fiala G and Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Archives of Microbiology 145: 56–61.

Forterre P (2015) The universal tree of life: an update. Frontiers in Microbiology 6: 717.

Franzmann PD, Liu Y, Balkwill DL, et al. (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2‐using methanogen from Ace Lake, Antarctica. International Journal of Systematic Bacteriology 47: 1068–1072.

Golyshina OV, Pivovarova TA, Karavaiko GI, et al. (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous‐iron‐oxidizing, cell‐wall‐lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology 50: 997–1006.

Gupta RS, Naushad S and Baker S (2015) Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. International Journal of Systematic and Evolutionary Microbiology 65: 1050–1069.

Gupta RS, Naushad S, Fabros R and Adeolu M (2016) A phylogenomic reappraisal of family‐level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov., and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam. nov. Antonie van Leeuwenhoek 109: 565–587.

Hafenbradl D, Keller M, Dirmeier R, et al. (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Archives of Microbiology 166: 308–314.

Hartmann R, Sickinger HD and Oesterhelt D (1980) Anaerobic growth of halobacteria. Proceedings of the National Academy of Sciences of the USA 77: 3821–3825.

Horz H‐P and Conrads G (2010) The discussion goes on: what is the role of Euryarchaeota in humans? Archaea 2010: 967271.

Huber H, Jannasch H, Rachel R, Fuchs T and Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Systematic and Applied Microbiology 20: 374–380.

Huber H, Hohn MJ, Rachel R, et al. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.

Hug LA, Baker BJ, Anantharaman K, et al. (2016) A new view of the tree of life. Nature Microbiology 1: 16048.

Iino T, Tamaki H, Tamazawa S, et al. (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes and Environments 28: 244–250.

Kashefi K, Tor JM, Holmes DE, et al. (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermoacidophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology 52: 719–728.

Knittel K and Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology 63: 311–334.

Kurr M, Huber R, König H, et al. (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Archives of Microbiology 156: 239–247.

Narasingarao P, Podell S, Ugalde JA, et al. (2012) De novo metagenomics assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. The ISME Journal 6: 81–93.

Nelson‐Sathi S, Dagan T, Landan G, et al. (2012) Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of the Haloarchaea. Proceedings of the National Academy of Sciences of the USA 109: 20537–20542.

Orphan VJ, House CH, Hinrichs K‐U, McKeegan KD and DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proceedings of the National Academy of Sciences of the USA 99: 7663–7668.

Patel GB and Sprott GD (1990) Methansaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. International Journal of Systematic Bacteriology 40: 79–82.

Probst AJ, Weinmaier T, Raymann K, et al. (2014) Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface. Nature Communications 5: 5497.

Reysenbach A‐L, Liu Y, Banta AB, et al. (2006) A ubiquitous thermoacidophilic archaeon from deep‐sea hydrothermal vents. Nature 442: 444–447.

Segerer A, Langworthy TA and Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Systematic and Applied Microbiology 10: 161–171.

Sorokin DY, Kublanov IV, Gavrilov SN, et al. (2016) Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. The ISME Journal 10: 240–252.

Sorokin DY, Merkel AY, Abbas B, et al. (2018) Methanonatronarchaeum thermophilum gen. nov., sp. nov. and ‘Candidatus Methanohalarchaeum thermophilum’, extremely halo(natrono)philic methyl‐reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov. International Journal of Systematic and Evolutionary Microbiology 68: 2199–2208.

Takai K, Sugai A, Itoh T and Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep‐sea hydrothermal vent chimney. International Journal of Systematic and Evolutionary Microbiology 50: 489–500.

Takai K, Nakamura K, Toki T, et al. (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high‐pressure cultivation. Proceedings of the National Academy of Sciences of the USA 105: 10949–10954.

Thauer RK, Hedderich R and Fischer R (1993) Reactions and enzymes involved in methanogenesis from carbon dioxide and H2. In: Ferry JG (ed.) Methanogens. Ecology, Physiology, Biochemistry and Genetics, pp 209–252. Chapman & Hall: New York.

Whitman WB, Boone DR, Koga Y and Keswani J (2001) Taxonomy of methanogenic archaea. In: Garrity GM (ed.) Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1: The Archaea and the deeply branching and phototrophic Bacteria, pp 211–213. Springer: New York.

Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the USA 74: 5088–5090.

Woese CR, Kandler O and Wheelis ML (1990) Towards a natural system of organisms: proposal for the domain Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the USA 87: 4576–4579.

Woese CR, Achenbach L, Rouviere P and Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition‐induced artifacts. Systematic and Applied Microbiology 14: 364–371.

Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed.) Methanogens. Ecology, Physiology, Biochemistry and Genetics, pp 128–206. Chapman & Hall: New York.

Further Reading

Brileya K and Reysenbach A‐L (2014) The class Archaeoglobi. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_323.

Cavicchioli R (ed.) (2007) Archaea: Molecular and Cellular Biology. American Society for Microbiology Press: Washington, DC.

Garrett RA and Klenk H‐P (eds) (2007) Archaea: Evolution, Physiology, and Molecular Biology. Wiley‐Blackwell: Hoboken, NJ.

Golyshina OV (2014) The family Ferroplasmaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_325.

Oren A (2014) The family Halobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_313.

Oren A (2014) The family Methanobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_411.

Oren A (2014) The family Methanosarcinaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_408.

Oren A (2014) The family Methanotrichaceae. In: Rosenberg E et al. (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_277.

Schut GJ, Lipscomb GL, Han Y, et al. (2014) The order Thermococcales and the family Thermococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_324.

Whitman WB, Bowen TL and Boone DR (2014) The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes – Other Major Lineages of Bacteria and the Archaea. Springer‐Verlag: Berlin. DOI: 10.1007/978‐3‐642‐38954‐2_407.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Oren, Aharon(Jun 2019) Euryarchaeota. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0004243.pub3]