| References |
|
|
Alekseyenko AV,
Kim N and
Lee CJ
(2007)
Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes.
RNA
13: 661670.
|
|
|
Björklund AK,
Ekman D and
Elofsson A
(2006)
Expansion of protein domain repeats.
PLoS Computational Biology
2: e114.
|
|
|
Blumenfeld OO and
Huang C-H
(1995)
Molecular genetics of the glycophorin gene family, the antigens for the MNSs blood groups: multiple gene rearrangements and modulation of splice site usage result in extensive diversification.
Human Mutation
6: 199209.
|
|
|
Bottenus RE,
Ichinose A and
Davie EW
(1990)
Nucleotide sequence of the gene for the b-subunit of human factor XIII.
Biochemistry
29: 1119511209.
|
|
|
Courseaux A and
Nahon J-L
(2001)
Birth of two chimeric genes in the Hominidae lineage.
Science
291: 12931297.
|
|
|
Coy JF,
Dubel S,
Kioschis P et al.
(1996)
Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes.
Genomics
32: 309316.
|
|
|
Doolittle RF
(1995)
The multiplicity of domains in proteins.
Annual Review of Biochemistry
64: 287314.
|
|
|
Dorit RL,
Schoenbach L and
Gilbert W
(1990)
How big is the universe of exons?
Science
250: 13771382.
|
|
|
Ejima Y and
Yang L
(2003)
Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling.
Human Molecular Genetics
12: 13211328.
|
|
|
Fedorov A,
Fedorova L,
Starshenko V,
Filatov V and
Grigorev E
(1998)
Influence of exon duplication on intron and exon phase distribution.
Journal of Molecular Evolution
46: 263271.
|
|
|
Furuno N,
Nakagawa K,
Eguchi U et al.
(1991)
Complete nucleotide sequence of the human RCC1 gene involved in coupling between DNA replication and mitosis.
Genomics
11: 459461.
|
|
|
Goodier JL,
Ostertag EM and
Kazazian HH
(2000)
Transduction of 3¢-flanking sequences is common in L1 retrotransposition.
Human Molecular Genetics
9: 653657.
|
|
|
Harrington ED,
Boue S,
Valcarcel J,
Reich JG and
Bork P
(2004)
Estimating rates of alternative splicing in mammals and invertebrates.
Nature Genetics
36: 915917.
|
|
|
Hawkins JD
(1988)
A survey on intron and exon lengths.
Nucleic Acids Research
16: 98939908.
|
|
|
Holguin MH,
Kurtz CB,
Parker CJ,
Weis JJ and
Weis JH
(1990)
Loss of human CR1- and murine Crry-like exons in human CR2 transcripts due to CR2 gene mutations.
Journal of Immunology
145: 17761781.
|
|
|
Huang CH,
Xie SS,
Socha W and
Blumenfeld OO
(1995)
Sequence diversification and exon inactivation in the glycophorin A gene family from chimpanzee to human.
Journal of Molecular Evolution
41: 478486.
|
|
|
Hughes AL
(1994)
Evolution of the ATP-binding cassette transmembrane transporters of vertebrates.
Molecular Biology and Evolution
11: 899910.
|
|
|
Jaworski CJ and
Piatigorsky J
(1989)
A pseudo-exon in the functional human A-crystallin gene.
Nature
337: 752754.
|
|
|
Kaessmann H,
Zollner S,
Nekrutenko A and
Li WH
(2002)
Signatures of domain shuffling in the human genome.
Genome Research
12: 16421650.
|
|
|
Kim H-J,
Kim D-H,
Magoori K,
Saeki S and
Yamamoto TT
(1998)
Evolution of the apolipoprotein E receptor 2 gene by exon loss.
Journal of Biochemistry
124: 451456.
|
|
|
Kim SJ,
Ruiz N,
Bezouska K and
Drickamer K
(1992)
Organization of the gene encoding the human macrophage mannose receptor (MRC1).
Genomics
14: 721727.
|
|
|
Kondrashov FA and
Koonin EV
(2001)
Origin of alternative splicing by tandem exon duplication.
Human Molecular Genetics
10: 26612669.
|
|
|
Krull M,
Brosius J and
Schmitz J
(2005)
Alu-SINE exonization: en route to protein-coding function.
Molecular Biology and Evolution
22: 17021711.
|
|
|
Kudo S and
Fukuda M
(1989)
Structural organization of glycophorins A and B genes: glycophorin B gene evolved by homologous recombination at Alu repeat sequence.
Proceedings of the National Academy of Sciences of the USA
86: 46194623.
|
|
|
Kudo S and
Fukuda M
(1990)
Identification of a novel human glycophorin, glycophorin E, by isolation of genomic clones and complementary DNA clones utilizing polymerase chain reaction.
Journal of Biological Chemistry
265: 11021110.
|
|
|
Lev-Maor G,
Sorek R,
Shomron N and
Ast G
(2003)
The birth of an alternatively spliced exon: 3¢ splice-site selection in Alu exons.
Science
300: 12881291.
|
|
|
Lev-Maor G,
Sorek R,
Levanon EY et al.
(2007)
RNA-editing-mediated exon evolution.
Genome Biology
8: R29.
|
|
|
Liu M and
Grigoriev A
(2004)
Protein domains correlate strongly with exons in multiple eukaryotic genomes evidence of exon shuffling?
Trends in Genetics
20: 399403.
|
|
|
Mayer WE,
O'Huigin C and
Klein J
(1993)
Resolution of the HLA-DRB6 puzzle: a case of grafting a de novo-generated exon on an existing gene.
Proceedings of the National Academy of Sciences of the USA
90: 1072010724.
|
|
|
Miyazaki H,
Fukamizu A,
Hirose S et al.
(1984)
Structure of the human renin gene.
Proceedings of the National Academy of Sciences of the USA
81: 59996003.
|
|
|
Modrek B and
Lee CJ
(2003)
Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss.
Nature Genetics
34: 177180.
|
|
|
Mola G,
Vela E,
Fernandez-Figueras MT et al.
(2007)
Exonization of Alu-generated splice variants in the surviving gene of human and non-human primates.
Journal of Molecular Biology
366: 10551063.
|
|
|
Moran JV,
DeBerardinis RJ and
Kazazian HH
(1999)
Exon shuffling by L1 retrotransposition.
Science
283: 15301534.
|
|
|
Park I,
Schaeffer E,
Sidoli A et al.
(1985)
Organization of the human transferrin gene: direct evidence that it originated by gene duplication.
Proceedings of the National Academy of Sciences of the USA
82: 31493153.
|
|
|
Patthy L
(1991)
Modular exchange principles in proteins.
Current Opinion in Structural Biology
1: 351361.
|
|
|
book
Patthy L
(1995)
Protein Evolution by Exon Shuffling.
New York:
Springer-Verlag.
|
|
|
Rozmahel R,
Heng HH,
Duncan AM et al.
(1997)
Amplification of CFTR exon 9 sequences to multiple locations in the human genome.
Genomics
45: 554561.
|
|
|
Sorek R,
Lev-Maor G,
Reznik M et al.
(2004)
Minimal conditions for exonization of intronic sequences: 5¢ splice site formation in Alu exons.
Molecular Cell
14: 221231.
|
|
|
Sorek R,
Dror G and
Shamir R
(2006)
Assessing the number of ancestral alternatively spliced exons in the human genome.
BMC Genomics
7: 273.
|
|
|
Südhof TC,
Goldstein JL,
Brown MS and
Russell DW
(1985a)
The LDL receptor gene: a mosaic of exons shared with different proteins.
Science
228: 815819.
|
|
|
Südhof TC,
Russell DW,
Goldstein JL et al.
(1985b)
Cassette of eight exons shared by genes for LDL receptor and EGF precursor.
Science
228: 893897.
|
|
|
Wang W,
Zheng H,
Yang S et al.
(2005)
Origin and evolution of new exons in rodents.
Genome Research
15: 12581264.
|
|
|
Wyatt K,
White HE,
Wang L et al.
(2006)
Lengsin is a survivor of an ancient family of class I glutamine synthetases re-engineered by evolution for a role in the vertebrate lens.
Structure
14: 18231834.
|
|
|
Xie SS,
Huang CH,
Reid ME,
Blancher A and
Blumenfeld OO
(1997)
The glycophorin A gene family in gorillas: structure, expression, and comparison with the human and chimpanzee homologues.
Biochemical Genetics
35: 5976.
|
|
|
Xing J,
Wang H,
Belancio VP et al.
(2006)
Emergence of primate genes by retrotransposon-mediated sequence transduction.
Proceedings of the National Academy of Sciences of the USA
103: 1760817613.
|
|
|
Zhang XH-F and
Chasin LA
(2006)
Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons.
Proceedings of the National Academy of Sciences of the USA
103: 1342713432.
|
| Further Reading |
|
|
book
Cooper DN
(1999)
Human Gene Evolution.
Oxford:
BIOS Scientific.
|
|
|
Kolkman JA and
Stemmer WP
(2001)
Directed evolution of proteins by exon shuffling.
Nature Biotechnology
19: 423428.
|
|
|
Long M
(2001)
Evolution of novel genes.
Current Opinion in Genetics and Development
11: 673680.
|
|
|
Vilches C,
Pando MJ and
Parham P
(2000)
Genes encoding human killer-cell Ig-like receptors with D1 and D2 extracellular domains all contain untranslated pseudoexons encoding a third Ig-like domain.
Immunogenetics
51: 639646.
|
| Web Links |
|
|
ePath
Chromosome condensation 1 (CHC1); LocusID: 1104. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=1104
|
|
|
ePath
Chromosome condensation 1 (CHC1); MIM number: 179710. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?179710
|
|
|
ePath
Cystic fibrosis transmembrane conductance regulator, ATP-binding cassette (CFTR); LocusID: 1080. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=1080
|
|
|
ePath
Cystic fibrosis transmembrane conductance regulator, ATP-binding cassette (CFTR); MIM number: 602421. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?602421
|
|
|
ePath
Low density lipoprotein receptor-related protein 8, apolipoprotein e receptor (LRP8); LocusID: 7804. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7804
|
|
|
ePath
Low density lipoprotein receptor-related protein 8, apolipoprotein e receptor (LRP8); MIM number: 602600. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?602600
|
|
|
ePath
Major histocompatibility complex, class II, DR beta 6 (HLA-DRB6); LocusID: 3128. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=3128
|
|
|
ePath
Renin (REN); MIM number: 179820. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?179820
|
|
|
ePath
Renin (REN); LocusID: 5972. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=5972
|
|
|
ePath
Transferrin (TF); LocusID: 7018. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7018
|
|
|
ePath
Transferrin (TF); MIM number: 190000. OMIM http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?190000
|
|
|
ePath
Vertebrate exon evolution database: http://www.bioinformatics.ucla.edu/VEEDB
|