Comparative Human Genomics

Comparative genomics involves the comparison of features of completely sequenced (or nearly so) genomes. Comparative sequence analyses facilitate both the functional annotation of genomes and whole-genome approaches to evolutionary issues. We present a review of the field of comparative genomics and point out how the comparative approach can be used to help better understand the human genome sequence.

Keywords: molecular evolution; natural selection; transposable elements; horizontal gene transfer; noncoding DNA; individual genomics

 References
    Adams MD, Celniker SE, Holt RA et al. (2000) The genome sequence of Drosophila melanogaster. Science 287: 2185.
    Agrawal A, Eastman QM and Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744.
    Altschul SF, Madden TL and Schaffer AA (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389.
    Aravind L, Tatusov RL, Wolf YI, Walker DR and Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends in Genetics 14: 442.
    Aravind L, Watanabe H, Lipman DJ and Koonin EV (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proceedings of the National Academy of Sciences of the USA 97: 11319.
    Bejerano G, Lowe CB, Ahituv N et al. (2006) A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441: 87.
    Bejerano G, Pheasant M, Makunin I et al. (2004) Ultraconserved elements in the human genome. Science 304: 1321.
    Bertone P, Stolc V, Royce TE et al. (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306: 2242.
    Consortium CeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012.
    Consortium EP (2004) The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306: 636.
    Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124.
    Doolittle WF and Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601.
    Fitch WM (1970) Distinguishing homologous from analogous proteins. Systematic Zoology 19: 99.
    Hiom K, Melek M and Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463.
    Initiative AG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796.
    Jordan IK (2006) Evolutionary tinkering with transposable elements. Proceedings of the National Academy of Sciences of the USA 103: 7941.
    Jordan IK, Makarova KS, Spouge JL, Wolf YI and Koonin EV (2001) Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Research 11: 555.
    Jordan IK, Rogozin IB, Glazko GV and Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends in Genetics 19: 68.
    Jordan IK, Rogozin IB, Wolf YI and Koonin EV (2002) Microevolutionary genomics of bacteria. Theoretical Population Biology 61: 435.
    Kamal M, Xie X and Lander ES (2006) A large family of ancient repeat elements in the human genome is under strong selection. Proceedings of the National Academy of Sciences of the USA 103: 2740.
    Kidwell MG and Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution; International Journal of Organic Evolution 55: 1.
    Kimura M (1968) Evolutionary rate at the molecular level. Nature 217: 624.
    Kimura M and Ota T (1974) On some principles governing molecular evolution. Proceedings of the National Academy of Sciences of the USA 71: 2848.
    book Koonin EV and Galperin MY (2002) Sequence-Evolution-Function: Computational Approaches in Comparative Genomics. New York: Springer.
    Koonin EV, Mushegian AR, Galperin MY and Walker DR (1997) Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Molecular Microbiology 25: 619.
    van de Lagemaat LN, Landry JR, Mager DL and Medstrand P (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends in Genetics 19: 530.
    Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409: 860.
    Leipe DD, Aravind L and Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Research 27: 3389.
    Lespinet O, Wolf YI, Koonin EV and Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Research 12: 1048.
    Levy S, Sutton G, Ng PC et al. (2007) The diploid genome sequence of an individual human. PLoS Biology 5: e254.
    Lowe CB, Bejerano G and Haussler D (2007) Thousands of human mobile element fragments undergo strong purifying selection near developmental genes. Proceedings of the National Academy of Sciences of the USA 104: 8005.
    Lynch M and Conery JS (2003) The origins of genome complexity. Science 302: 1401.
    Modrek B and Lee C (2002) A genomic view of alternative splicing. Nature Genetics 30: 13.
    Nakabachi A, Yamashita A, Toh H et al. (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314: 267.
    Nekrutenko A and Li WH (2001) Transposable elements are found in a large number of human protein-coding genes. Trends in Genetics 17: 619.
    Nishihara H, Smit AF and Okada N (2006) Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Research 16: 864.
    book Ohno S (1970) Evolution by Gene Duplication. New York: Springer.
    book Ohno S (1972) "So much “junk” DNA in our genome". In: Smith HH (ed.) Evolution of Genetic Systems. New York: Gordon and Breach.
    Orgel LE and Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604.
    Piriyapongsa J, Rutledge MT, Patel S, Borodovsky M and Jordan IK (2007) Evaluating the protein coding potential of exonized transposable element sequences. Biology Direct 2: 31.
    Pollard KS, Salama SR, King B et al. (2006) An RNA gene expressed during cortical development evolved rapidly in humans. Nature 443: 167.
    Tatusov RL, Koonin EV and Lipman DJ (1997) A genomic perspective on protein families. Science 278: 631.
    Tishkoff SA, Gonder MK, Henn BM et al. (2007) Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics 39: 31.
    Venter JC, Adams MD, Myers EW et al. (2001) The sequence of the human genome. Science 291: 1304.
    Voight BF, Kudaravalli S, Wen X and Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biology 4: e72.
    Williamson SH, Hubisz MJ, Clark AG et al. (2007) Localizing recent adaptive evolution in the human genome. PLoS Genetics 3: e90.
    Woese CR and Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the USA 74: 5088.
    Wong GK, Passey DA, Huang Y, Yang Z and Yu J (2000) Is “junk” DNA mostly intron DNA? Genome Research 10: 1672.
    Xie X, Kamal M and Lander ES (2006) A family of conserved noncoding elements derived from an ancient transposable element. Proceedings of the National Academy of Sciences of the USA 103: 11659.
    book Zuckerkandl E and Pauling L (1962) "Molecular disease, evolution, and genic diversity". In: Kasha M and Pullman B (eds) Horizons in Biochemistry. New York: Academic Press.
 Further Reading
    Blanchette M, Kent WJ, Riemer C et al. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Research 14: 708–715.
    book Bork P (Ed.) (2000) Advances in Protein Chemistry, vol. 54. New York: Academic Press.
    Dacks JB and Doolittle WF (2001) Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107: 419–425.
    Fraser CM, Eisen J, Fleischmann RD, Ketchum KA and Peterson S (2000) Comparative genomics and understanding of microbial biology. Emerging Infectious Diseases 6: 505–512.
    Kent WJ, Baertsch R, Hinrichs A et al. (2003) Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences of the USA 100: 11484–11489.
    Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annual Review of Genetics 39: 309–338.
    Koonin EV, Aravind L and Kondrashov AS (2000) The impact of comparative genomics on our understanding of evolution. Cell 101: 573–576.
    Koonin EV, Makarova KS and Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annual Review of Microbiology 55: 709–742.
    Lynch M (2007) The frailty of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences of the USA 104: 8597–8604.
    Margulies EH, Cooper GM, Asimenos G et al. (2007) Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome. Genome Research 17: 760–774.
    Mariño-Ramírez L and Jordan IK (2006) Transposable element derived DNaseI-hypersensitive sites in the human genome. Biology Direct 1: 20.
    Mariño-Ramírez L, Lewis KC, Landsman D and Jordan IK (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenetics and Genome Research 110: 333–341.
    Piriyapongsa J, Mariño-Ramírez L and Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176: 1323–1337.
    Siepel A, Bejerano G, Pedersen JS et al. (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Research 15: 1034–1050.
    Wang T, Zeng J, Lowe CB et al. (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proceedings of the National Academy of Sciences of the USA 104: 18613–18618.
    Waterston RH, Lindblad-Toh K, Birney E et al. (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.
Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Jordan, I King, and Koonin, Eugene V(Jul 2008) Comparative Human Genomics. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0005296.pub2]