3′ UTR Mutations and Human Disorders

The 3¢ untranslated region (3¢ UTR) of a number of messenger ribonucleic acids (mRNAs) is involved in the regulation of the processing, localization, translation or degradation of the transcript. Perturbations in such 3¢ UTR-mediated functions are implicated in a variety of human diseases.

Keywords: mRNA processing; mRNA translation; mRNA degradation; 3¢ untranslated region; posttranscriptional control; human diseases; mRNA stability; trans-acting factors; cis-acting determinants

 References
    Borrmann L, Wilkening S and Bullerdiek J (2001) The expression of HMGA genes is regulated by their 3¢ UTR. Oncogene 20: 4537–4541.
    Chagnovich D and Cohn SL (1997) Activity of a 40 kDa RNA-binding protein correlates with MYCN and c-fos mRNA stability in human neuroblastoma. European Journal of Cancer 33: 2064–2067.
    Charlet BN, Savkur RS, Singh G, et al. (2002) Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Molecular Cell 10: 45–53.
    Chesney J, Mitchell R, Benigni F, et al. (1999) An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America 96: 3047–3052.
    Frittitta L, Ercolino T, Bozzali M, et al. (2001). A cluster of three nucleotide polymorphisms in the 3¢untranslated region of human glycoprotein PC-1 gene stabilizes PC-1 mRNA and is associated with increased PC-1 protein content and insulin resistance-related abnormalities. Diabetes 50: 1952–1955.
    Fu L, Ma W and Benchimol S (1999) A translation repressor element resides in the 3¢ untranslated region of human p53 mRNA. Oncogene 18: 6419–6424.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F and Kollias G (1999) Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10: 387–398.
    Mankodi A, Logigian E, Callahan L, et al. (2000) Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289: 1769–1773.
    Morales J, Russell JE and Liebhaber SA (1997) Destabilization of human -globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. Journal of Biological Chemistry 272: 6607–6613.
    Peng SS, Chen CY, Xu N and Shyu AB (1998) RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO Journal 17: 3461–3470.
    Philips AV, Timchenko LT and Cooper TA (1998) Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280: 737–741.
    Rimokh R, Berger F, Bastard C, et al. (1994) Rearrangement of CCND1 (BCL1/PRAD1) 3¢ untranslated region in mantle-cell lymphomas and t(11q13)-associated leukemias. Blood 83: 3689–3696.
    Roberts R, Timchenko NA, Miller JW, et al. (1997) Altered phosphorylation and intracellular distribution of a (CUG)n triplet repeat RNA-binding protein in patients with myotonic dystrophy and in myotonin protein kinase knockout mice. Proceedings of the National Academy of Sciences of the United States of America 94: 13221–13226.
    Sato S, Nakamura M, Cho DH, et al. (2001) Identification of transcriptional targets for Six5: implication for the pathogenesis of myotonic dystrophy type 1. Human Molecular Genetics 11: 1045–1058.
    Timchenko LT (1999) Myotonic dystrophy: the role of RNA CUG triplet repeats. American Journal of Human Genetics 64: 360–364.
    Toda T, Kobayashi K, Kondo-Iida E, Sasaki J and Nakamura Y (2000) The Fukuyama congenital muscular dystrophy story. Neuromuscular Disorders 10: 153–159.
 Further Reading
    Cazzola M and Radeck C (2000) Translational pathophysiology: a novel molecular mechanism of human disease. Blood 95: 3280–3288.
    De Moor CH and Richter JD (2001) Translational control in vertebrate development. International Review of Cytology 203: 567–608.
    Macdonald P (2001) Diversity in translational regulation. Current Opinion in Cell Biology 13: 326–331.
    Mendez R and Richter JD (2001) Translational control by CPEB: a means to the end. Nature Review 2: 521–529.
    book Sonenberg N, Hershey WB and Matthews MB (2000) "Translational control of gene expression". Plainview, NY: Cold Spring Harbor Laboratory Press.
 Web Links
    ePath CCND1 (cyclin D1 (PRAD1: parathyroid adenomatosis 1)); LocusID: 595. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=595
    ePath DMPK (dystrophia myotonica-protein kinase); LocusID: 1760. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=1760
    ePath FCMD (Fukuyama type congenital muscular dystrophy (fukutin)); LocusID: 2218. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=2218
    ePath TP53 (tumor protein p53 (Li-Fraumeni syndrome)); LocusID: 7157. LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=7157
    ePath CCND1 (cyclin D1 (PRAD1: parathyroid adenomatosis 1)); MIM number: 168461. OMIM: http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?168461
    ePath DMPK (dystrophia myotonica-protein kinase); MIM number: 605377. OMIM: http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?605377
    ePath FCMD (Fukuyama type congenital muscular dystrophy (fukutin)); MIM number: 253800. OMIM: http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?253800
    ePath TP53 (tumor protein p53 (Li–Fraumeni syndrome)); MIM number: 191170. OMIM: http://www3.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?191170
Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Conne, Béatrice, Stutz, André, and Vassalli, Jean‐Dominique(Jan 2006) 3′ UTR Mutations and Human Disorders. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1038/npg.els.0005502]