| References |
|
|
Ahmad MF,
Raman B,
Ramakrishna T and
Rao CM
(2008)
Effect of phosphorylation on alphaB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of [alpha]B-crystallin and its phosphorylation-mimicking mutant.
Journal of Molecular Biology
375:
10401051.
|
|
|
Arrigo AP,
Simon S,
Gibert B et al.
(2007)
Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets.
FEBS Letters
581:
36653674.
|
|
|
Bagnéris C,
Bateman OA,
Naylor CE et al.
(2009)
Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20.
Journal of Molecular Biology
392:
12421252.
|
|
|
Bax B,
Lapatto R,
Nalini V et al.
(1990)
X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins.
Nature
347:
776780.
|
|
|
Bloemendal H,
de Jong W,
Jaenicke R et al.
(2004)
Ageing and vision: structure, stability and function of lens crystallins.
Progress in Biophysics and Molecular Biology
86:
407485.
|
|
|
Cvekl A and
Duncan MK
(2007)
Genetic and epigenetic mechanisms of gene regulation during lens development.
Progress in Retinal and Eye Research
26:
555597.
|
|
|
Delaye M and
Tardieu A
(1983)
Short-range order of crystallin proteins accounts for eye lens transparency.
Nature
302:
415417.
|
|
|
den Dunnen JT,
Moormann RJ,
Cremers FP and
Schoenmakers JG
(1985)
Two human gamma-crystallin genes are linked and riddled with Alu-repeats.
Gene
38:
197204.
|
|
|
den Engelsman J,
Keijsers V,
de Jong WW and
Boelens WC
(2003)
The small heat-shock protein alpha B-crystallin promotes FBX4-dependent ubiquitination.
Journal of Biological Chemistry
278:
46994704.
|
|
|
Fujimoto M,
Izu H,
Seki K et al.
(2004)
HSF4 is required for normal cell growth and differentiation during mouse lens development.
EMBO Journal
23:
42974306.
|
|
|
Graw J
(2009)
Genetics of crystallins: cataract and beyond.
Experimental Eye Research
88:
173189.
|
|
|
Haslbeck M,
Franzmann T,
Weinfurtner D and
Buchner J
(2005)
Some like it hot: the structure and function of small heat-shock proteins.
Nature Structural and Molecular Biology
12:
842846.
|
|
|
Hejtmancik JF
(2008)
Congenital cataracts and their molecular genetics.
Seminars in Cell and Developmental Biology
19:
134149.
|
|
|
Horwitz J
(2003)
Alpha-crystallin.
Experimental Eye Research
76:
145153.
|
|
|
de Jong WW,
Caspers GJ and
Leunissen JA
(1998)
Genealogy of the alpha-crystallin: small heat-shock protein superfamily.
International Journal of Biological Macromolecules
22:
151162.
|
|
|
Kantorow M and
Piatigorsky J
(1998)
Phosphorylations of alpha A- and alpha B-crystallin.
International Journal of Biological Macromolecules
22:
307314.
|
|
|
Kappé G,
Franck E,
Verschuure P et al.
(2003)
The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10.
Cell Stress Chaperones
8:
5361.
|
|
|
Kappé G,
Purkiss A,
van Genesen ST,
Slingsby C and
Lubsen NH
(2010)
Explosive expansion of -crystallin genes in the ancestral vertebrate.
Journal of Molecular Evolution
71:
219230.
|
|
|
Lapko VN,
Smith DL and
Smith JB
(2003)
Expression of betaA2-crystallin in human lenses.
Experimental Eye Research
77:
383385.
|
|
|
Lin DI,
Barbash O,
Kumar KGS et al.
(2006)
Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-alphaB crystallin complex.
Molecular Cell
24:
355366.
|
|
|
Ma Z,
Hanson SR,
Lampi KJ et al.
(1998)
Age-related changes in human lens crystallins identified by HPLC and mass spectrometry.
Experimental Eye Research
67:
2130.
|
|
|
Meakin SO,
Breitman ML and
Tsui LC
(1985)
Structural and evolutionary relationships among five members of the human gamma-crystallin gene family.
Molecular and Cellular Biology
5:
14081414.
|
|
|
Piatigorsky J
(2003)
Crystallin genes: specialization by changes in gene regulation may precede gene duplication.
Journal of Structural and Functional Genomics
3:
131137.
|
|
|
Sharma KK and
Santhoshkumar P
(2009)
Lens aging: effects of crystallins.
Biochimica et Biophysica Acta
1790:
10951108.
|
|
|
Shimeld SM,
Purkiss AG,
Dirks RPH et al.
(2005)
Urochordate -crystallin and the evolutionary origin of the vertebrate eye lens.
Current Biology
15:
16841689.
|
|
|
Weadick CJ and
Chang BSW
(2009)
Molecular evolution of the lens crystallin superfamily: evidence for a retained ancestral function in N crystallins.
Molecular Biology and Evolution
26:
11271142.
|
|
|
Werten PJL,
Röll B,
van Aalten DMF and
de Jong WW
(2000)
Gecko iota-crystallin: how cellular retinol-binding protein became an eye lens ultraviolet filter.
Proceedings of the National Academy of Sciences of the USA
97:
32823287.
|
|
|
Wistow G,
Wyatt K,
David L et al.
(2005)
gammaN-crystallin and the evolution of the betagamma-crystallin superfamily in vertebrates.
FEBS Journal
272:
22762291.
|
| Further Reading |
|
|
Andley UP
(2007)
Crystallins in the eye: function and pathology.
Progress in Retinal and Eye Research
26:
7898.
|
|
|
Andley UP
(2009)
Effects of alpha-crystallin on lens cell function and cataract pathology.
Current Molecular Medicine
9:
887892.
|
|
|
Jaenicke R and
Slingsby C
(2001)
Lens crystallins and their microbial homologs: structure, stability, and function.
Critical Reviews in Biochemistry and Molecular Biology
36:
435499.
|
|
|
Lamb TD,
Collin SP and
Pugh EN
(2007)
Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup.
Nature Reviews. Neuroscience
8:
960976.
|
|
|
book
Land MF and
Nilsson D-E
(2002)
Animal Eyes.
Oxford: Oxford University Press.
|
|
|
Wistow G,
Peterson K,
Gao J et al.
(2008)
NEIBank: genomics and bioinformatics resources for vision research.
Molecular Vision
14:
13271337.
|
| Web Links |
|
| ePath NCBI website http://www.ncbi.nlm.nih.gov/
|
|
| ePath NEIbank http://neibank.nei.nih.gov
|
|
| ePath Swiss-Prot http://www.uniprot.org/
|