Microarray Bioinformatics

Bioinformatics covers the application of computational tools for expanding the use of biological, medical or health-related data. This includes tools to handle, acquire, store, organize, archive, analyse or visualize data.

Keywords: bioinformatics; gene expression analysis; patient stratification; molecular diagnostics; microarray; data analysis

Figure 1. Linking clinical data with molecular data. Correlation view of specimens from 285 patients with AML showing an adapted correlation view (2856 probe sets). The correlation displays pairwise correlations between the samples. The colours of the cells relate to Pearson's correlation coefficient values, with deeper colours indicating higher positive (red) or negative (blue) correlations.
Figure 2. The OmniViz data-mining software is used here to integrate dynamic analyses of multiple data sources. The microarray analysis (upper left) identifies novel, unforeseen relationships, but deciding which of the behaviours is worth pursuing requires further data. In this case, the microarray analysis is linked with investigation of protein expression (upper right), analysis of structures and high-throughput screening of compounds known to interact with related targets (lower left) and contextual analysis of the vast scientific literature (lower right). Through visualizing and automatic linking of these analyses simultaneously, it is possible to define which line of investigation will be more fruitful from both a scientific and business perspective.
close
 References
    Al-Shahrour F, Minguez P, Tárraga J et al. (2006) BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Research 34: W472–W476.
    Birkland A and Yona G (2006) BIOZON: a system for unification, management and analysis of heterogeneous biological data. BMC Bioinformatics 7: 70.
    Brazma A, Hingamp P, Quackenbush J et al. (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nature Genetics 29: 365–371.
    Colangeli R, Helb D, Vilchèze C et al. (2007) Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathogens 6: e87.
    Crowther DJ (2002) Applications of microarrays in the pharmaceutical industry. Current Opinion in Pharmacology 2(5): 551–554.
    Datta S and Datta S (2006) Evaluation of clustering algorithms for gene expression data. BMC Bioinformatics 7: S16.
    Gautier L, Cope L, Bolstad BM and Irizarry RA (2004) Affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3): 307–315.
    Golub TR, Slonim DK, Tamayo P et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531–537.
    Graeber TG and Eisenberg D (2001) Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature 29: 295–300.
    Lee ML, Kuo FC, Whitmore GA and Sklar J (2000) Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences of the USA 97: 9834–9839.
    Lee Y, Sultana R, Pertea G et al. (2002) Cross-referencing eukaryotic genomes: TIGR orthologous gene alignments (TOGA). Genome Research 12: 493–502.
    Lim WK, Wang K, Lefebvre C and Califano A (2007) Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23: i282–i288.
    Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO and Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83–86.
    Marton MJ, DeRisi JL, Bennett HA et al. (1998) Drug target validation and identification of secondary drug target effects using DNA microarrays. Nature Medicine 4: 1293–1301.
    van Osdol WW, Myers TG, Paull KD, Kohn KW and Weinstein JN (1994) Use of the Kohonen self-organizing map to study the mechanisms of action of chemotherapeutic agents. Journal of the National Cancer Institute 86: 1853–1859.
    Pelizzola M, Pavelka N, Foti M and Ricciardi-Castagnoli P (2006) AMDA: an R package for the automated microarray data analysis. BMC Bioinformatics 7: 335.
    Ross DT, Scherf U, Eisen MB et al. (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24: 227–235.
    Scherf U, Ross DT, Waltham M et al. (2000) A gene expression database for the molecular pharmacology of cancer. Nature Genetics 24: 236–244.
    Shankavaram UT, Reinhold WC, Nishizuka S et al. (2007) Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Molecular Cancer Therapeutics 6(3): 820–832.
    Stevens R, Tipney HJ, Wroe C et al. (2004) Exploring Williams–Beuren syndrome using myGrid. Bioinformatics 20: i303–i310.
    Tagliafico E et al. (2006) Identification of a molecular signature predictive of sensitivity to differentiation induction in acute myeloid leukemia. Leukemia 20: 1751–1758.
    Tusher VG, Tibshirani R and Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the USA 98: 5116–5121.
    Valk PJ, Verhaak RG, Beijen MA et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. New England Journal of Medicine 350(16): 1617–1628.
    Vardhanabhuti S et al. (2006) A comparison of statistical tests for detecting differential expression using Affymetrix oligonucleotide microarrays. OMICS 10: 555–566.
    van 't Veer LJ, Dai H, van de Vijver MJ et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530–536.
    Wolfe CJ, Kohane IS and Butte AJ (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene coexpression networks. BMC Bioinformatics 6: 227.
 Further Reading
    Eisen MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the USA 95: 14863–14868.
    Monks A, Scudiero DA, Johnson GS, Paull KD and Sausville EA (1997) The NCI anti-cancer drug screen: a smart screen to identify effectors of novel targets. Anticancer Drug Design 12: 533–541.
    Musumarra G, Condorelli DF, Scire S and Costa AS (2001) Shortcuts in genome-scale cancer pharmacology research from multivariate analysis of the National Cancer Institute gene expression database. Biochemical Pharmacology 62: 547–553.
    Wen X, Fuhrman S, Michaels GS et al. (1998) Large-scale temporal gene expression mapping of central nervous system development. Proceedings of the National Academy of Sciences of the USA 95: 334–339.
 Web Links
    ePath Affymetrix http://www.affymetrix.com/index.affx
    ePath ArrayExpress http://www.ebi.ac.uk/microarray-as/aer/?#ae-main[0]
    ePath Bioconductor http://www.bioconductor.org/
    ePath BioMoby http://biomoby.org/
    ePath BRB ArrayTools http://linus.nci.nih.gov/pilot/index.htm
    ePath caBio http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/caBIO
    ePath CIBEX http://cibex.nig.ac.jp/index.jsp
    ePath DAVID http://david.abcc.ncifcrf.gov/
    ePath Developmental Therapy Program (DTP) NCI/NIH http://dtp.nci.nih.gov
    ePath Ensembl http://www.ensembl.org/index.html
    ePath European Bioinformatics Institute (EBI) http://www.ebi.ac.uk/
    ePath Gene Ontology Consortium http://www.geneontology.org/
    ePath GeneGo http://www.genego.com/
    ePath GenMAPP http://www.genmapp.org/
    ePath GEO http://www.ncbi.nlm.nih.gov/geo/
    ePath GoMiner http://discover.nci.nih.gov/gominer/
    ePath HAPI http://132.239.155.52/HAPI/
    ePath iHOP http://www.ihop-net.org/UniPub/iHOP/
    ePath Inforsense http://www.inforsense.com/
    ePath Ingenuity http://www.ingenuity.com/
    ePath Inxight http://www.inxight.com/
    ePath Kyoto Encyclopedia of Genes and Genomes (KEGG) http://www.genome.ad.jp/kegg/
    ePath limmaGUI http://bioinf.wehi.edu.au/limmaGUI/
    ePath Mouse Genome Informatics (MGI) http://www.informatics.jax.org/
    ePath MIAME http://www.mged.org/Workgroups/MIAME/miame.html
    ePath Microarray Gene Expression Data Group (MGED Group) http://www.mged.org/
    ePath myGrid http://www.mygrid.org.uk/?&MMN_position=1:1
    ePath National Center for Biotechnology Information (NCBI) http://www.ncbi.nlm.nih.gov/
    ePath OMIM http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM
    ePath OmniViz http://www.biowisdom.com/
    ePath Partek http://www.partek.com/
    ePath PubGene http://www.pubgene.uio.no/
    ePath R project http://www.r-project.org/
    ePath Reactome http://www.genomeknowledge.org/cgi-bin/frontpage?DB=gk_current
    ePath Seahawk applet http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Seahawk.html
    ePath Spotfire http://www.spotfire.com/
    ePath Taverna project http://taverna.sourceforge.net/
    ePath The Institute for Genomic Research (TIGR) http://www.tigr.org/
Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Stubbs, Andrew P, Van Yper, Stefan JL, and van der Spek, Peter J(Jul 2008) Microarray Bioinformatics. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0005957.pub2]