| References |
|
|
Aerts S,
Van Loo P,
Thijs G et al.
(2005)
TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis.
Nucleic Acids Research
33(Web Server issue):
W393W396.
|
|
|
Ansari-Lari MA,
Oeltjen JC,
Schwartz S et al.
(1998)
Comparative sequence analysis of a gene-rich cluster at human chromosome 12p13 and its syntenic region in mouse chromosome 6.
Genome Research
8(1):
2940.
|
|
|
Balakirev ES and
Ayala FJ
(2003)
Pseudogenes: are they junk or functional DNA?
Annual Review of Genetics
37:
123151.
|
|
|
Bejerano G,
Pheasant M,
Makunin I et al.
(2004)
Ultraconserved elements in the human genome.
Science
304(5675):
13211325.
|
|
|
Birney E,
Stamatoyannopoulos JA,
Dutta A et al.
(2007)
Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.
Nature
447(7146):
799816.
|
|
|
Blanchette M and
Tompa M
(2003)
FootPrinter: a program designed for phylogenetic footprinting.
Nucleic Acids Research
31(13):
38403842.
|
|
|
Brickner AG,
Koop BF,
Aronow BJ and
Wiginton DA
(1999)
Genomic sequence comparison of the human and mouse adenosine deaminase gene regions.
Mammalian Genome
10(2):
95101.
|
|
|
book
Cooper DN
(1999)
Human Gene Evolution.
Oxford: BIOS Scientific.
|
|
|
Cunningham JM,
Purucker ME,
Jane SM et al.
(1994)
The regulatory element 3¢ to the A gamma-globin gene binds to the nuclear matrix and interacts with special A-T-rich binding protein 1 (SATB1), an SAR/MAR-associating region DNA binding protein.
Blood
84(4):
12981308.
|
|
|
van Deursen D,
Botma GJ,
Jansen H and
Verhoeven AJ
(2007)
Comparative genomics and experimental promoter analysis reveal functional liver-specific elements in mammalian hepatic lipase genes.
BMC Genomics
8:
99.
|
|
|
Duret L,
Dorkeld F and
Gautier C
(1993)
Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression.
Nucleic Acids Research
21(10):
23152322.
|
|
|
Flint J,
Tufarelli C,
Peden J et al.
(2001)
Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster.
Human Molecular Genetics
10(4):
371382.
|
|
|
Frith MC,
Pheasant M and
Mattick JS
(2005)
The amazing complexity of the human transcriptome.
European Journal of Human Genetics
13(8):
894897.
|
|
|
Greaves DR,
Quinn CM,
Seldin MF and
Gordon S
(1998)
Functional comparison of the murine macrosialin and human CD68 promoters in macrophage and nonmacrophage cell lines.
Genomics
54(1):
165168.
|
|
|
Gumucio DL,
Shelton DA,
Zhu W et al.
(1996)
Evolutionary strategies for the elucidation of cis and trans factors that regulate the developmental switching programs of the beta-like globin genes.
Molecular Phylogenetics and Evolution
5(1):
1832.
|
|
|
Hood L,
Rowen L and
Koop BF
(1995)
Human and mouse T-cell receptor loci: genomics, evolution, diversity, and serendipity.
Annals of the New York Academy of Sciences
758:
390412.
|
|
|
Jareborg N,
Birney E and
Durbin R
(1999)
Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs.
Genome Research
9(9):
815824.
|
|
|
Jeffares DC,
Mourier T and
Penny D
(2006)
The biology of intron gain and loss.
Trends in Genetics
22(1):
1622.
|
|
|
Jegga AG,
Chen J,
Gowrisankar S et al.
(2007)
GenomeTrafac: a whole genome resource for the detection of transcription factor binding site clusters associated with conventional and microRNA encoding genes conserved between mouse and human gene orthologs.
Nucleic Acids Research
35(Database issue):
D116D121.
|
|
|
Jegga AG,
Sherwood SP,
Carman JW et al.
(2002)
Detection and visualization of compositionally similar cis-regulatory element clusters in orthologous and coordinately controlled genes.
Genome Research
12(9):
14081417.
|
|
|
Jurka J,
Zietkiewicz E and
Labuda D
(1995)
Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era.
Nucleic Acids Research
23(1):
170175.
|
|
|
Katzman S,
Kern AD,
Bejerano G et al.
(2007)
Human genome ultraconserved elements are ultraselected.
Science
317(5840):
915.
|
|
|
Loots GG,
Ovcharenko I,
Pachter L,
Dubchak I and
Rubin EM
(2002)
rVista for comparative sequence-based discovery of functional transcription factor binding sites.
Genome Research
12(5):
832839.
|
|
|
Makalowski W,
Zhang J and
Boguski MS
(1996)
Comparative analysis of 1196 orthologous mouse and human full-length mRNA and protein sequences.
Genome Research
6(9):
846857.
|
|
|
Marchese A,
Cheng R,
Lee MC et al.
(1994)
Mapping studies of two G protein-coupled receptor genes: an amino acid difference may confer a functional variation between a human and rodent receptor.
Biochemical and Biophysical Research Communications
205(3):
19521958.
|
|
|
Margarit E,
Guillen A,
Rebordosa C et al.
(1998)
Identification of conserved potentially regulatory sequences of the SRY gene from 10 different species of mammals.
Biochemical and Biophysical Research Communications
245(2):
370377.
|
|
|
Mattick JS and
Makunin IV
(2006)
Non-coding RNA.
Human Molecular Genetics
15(Spec No 1):
R1729.
|
|
|
Mazumder B,
Seshadri V and
Fox PL
(2003)
Translational control by the 3¢-UTR: the ends specify the means.
Trends in Biochemical Sciences
28(2):
9198.
|
|
|
Mikkelsen TS,
Wakefield MJ,
Aken B et al.
(2007)
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.
Nature
447(7141):
167177.
|
|
|
Nobrega MA,
Zhu Y,
Plajzer-Frick I,
Afzal V and
Rubin EM
(2004)
Megabase deletions of gene deserts result in viable mice.
Nature
431(7011):
988993.
|
|
|
Oeltjen JC,
Malley TM,
Muzny DM et al.
(1997)
Large-scale comparative sequence analysis of the human and murine Bruton's tyrosine kinase loci reveals conserved regulatory domains.
Genome Research
7(4):
315329.
|
|
|
Olsen PH and
Ambros V
(1999)
The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation.
Developmental Biology
216(2):
671680.
|
|
|
Pang KC,
Frith MC and
Mattick JS
(2006)
Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function.
Trends in Genetics
22(1):
15.
|
|
|
Plotnikova OV,
Kondrashov FA,
Vlasov PK et al.
(2007)
Conversion and compensatory evolution of the gamma-crystallin genes and identification of a cataractogenic mutation that reverses the sequence of the human CRYGD gene to an ancestral state.
American Journal of Human Genetics
81(1):
3243.
|
|
|
Ponting CP and
Lunter G
(2006)
Signatures of adaptive evolution within human non-coding sequence.
Human Molecular Genetics
15(Spec No 2):
R170R175.
|
|
|
Ravetch JV,
Kirsch IR and
Leder P
(1980)
Evolutionary approach to the question of immunoglobulin heavy chain switching: evidence from cloned human and mouse genes.
Proceedings of the National Academy of Sciences of the USA
77(11):
67346738.
|
|
|
Sandelin A,
Wasserman WW and
Lenhard B
(2004)
ConSite: web-based prediction of regulatory elements using cross-species comparison.
Nucleic Acids Research
32(Web Server issue):
W249W252.
|
|
|
Smit AF and
Riggs AD
(1995)
MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation.
Nucleic Acids Research
23(1):
98102.
|
|
|
Stallings RL
(1995)
Conservation and evolution of (CT)n/(GA)n microsatellite sequences at orthologous positions in diverse mammalian genomes.
Genomics
25(1):
107113.
|
|
|
Vargas-Madrazo E,
Almagro JC and
Lara-Ochoa F
(1995)
Structural repertoire in VH pseudogenes of immunoglobulins: comparison with human germline genes and human amino acid sequences.
Journal of Molecular Biology
246(1):
7481.
|
|
|
Ward RD,
Davis SW,
Cho M et al.
(2007)
Comparative genomics reveals functional transcriptional control sequences in the Prop1 gene.
Mammalian Genome
18(67):
521537.
|
| Further Reading |
|
|
Clark MS
(1999)
Comparative genomics: the key to understanding the human genome project.
BioEssays
21:
121130.
|
|
|
Ludwig MZ
(2002)
Functional evolution of noncoding DNA.
Current Opinion in Genetics & Development
12:
634639.
|
|
|
Miller W,
Makova KD,
Nekrutenko A and
Hardison RC
(2004)
Comparative genomics.
Annual Review of Genomics and Human Genetics
5:
1556.
|
|
|
Stone EA,
Cooper GM and
Sidow A
(2005)
Trade-offs in detecting evolutionarily constrained sequence by comparative genomics.
Annual Review of Genomics and Human Genetics
6:
143164.
|
| Web Links |
|
|
ePath
glucose phosphate isomerase (GPI); Entrez Gene ID: 2821. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&list_uids=2821.
|
|
|
ePath
glucose phosphate isomerase (GPI); MIM number: 172400. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?172400.
|
|
|
ePath
hemoglobin, A (HBG1); Entrez Gene ID: 3047. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&list_uids=3047.
|
|
|
ePath
hemoglobin, A (HBG1); MIM number: 142200. OMIM: http://www.ncbi.nlm.nih.gov/htbin-post/Omim/dispmim?142200.
|
|
|
ePath
RNA, 7SL, cytoplasmic (RN7SL); Entrez Gene ID: 6029. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&list_uids=6029.
|
|
|
ePath
tyrosine hydroxylase (TH); Entrez Gene ID: 7054. Entrez Gene: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&list_uids=7054.
|
|
|
ePath
tyrosine hydroxylase (TH); MIM number: 191290. OMIM: http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=191290.
|