Deinococcus–Thermus Group

Abstract

The Deinococcus–Thermus group represents an ancient lineage that contains some of the most conspicuous species within the domain Bacteria. The group is distinguished by species that resist the lethal effects of exposure to ionising radiation and ultraviolet light, and by species that thrive at high temperature. Deinococcus–Thermus is comprised of two orders, the Deinococcales and the Thermales. The mostly mesophilic species of Deinococcales demonstrate uncommon resistance following exposure to electromagnetic radiations, tolerating doses that normally destroy vegetative bacteria. The Thermales are thermophilic with optimal growth at temperatures between 60 and 80 °C, but show no evidence of resistance to electromagnetic radiation. Despite these striking and distinctive phenotypic differences, 16S ribosomal ribonucleic acid sequences verify that members of these orders are specifically related to each other.

Key Concepts

  • Species within the Deinococcus–Thermus group exist over a wide geographic distribution within the natural and built environments.
  • All species within the Deinococcus–Thermus group are specifically related to each other through their 16S rRNA sequences.
  • Members of the Deinococcales and Thermales share only three phenotypic characteristics: all are nonmotile, none form endospores and all utilise menaquinone 8 as their major respiratory lipoquinone.
  • Members of the Deinococcales are aerobic, chemoorganotrophic and display respiratory metabolism. Other chemotaxonomic characteristics of this order are more varied than might be expected for closely related species.
  • Most members of the Deinococcales display extreme resistance to the lethal effects of ionising radiation and UV light; there is a subset of species that are substantially less resistant to these agents.
  • Members of the Thermales are thermophilic or slightly thermophilic rods. Optimal growth temperature for the type strains within the order falls between 60 and 70 °C, but there is considerable variation in growth temperature among nontype species.
  • Most members of the Thermales are aerobic chemoorganotrophs reported to grow between pH 5.0 and 10.5 with optimal growth between pH 6 and 7. In the presence of an appropriate electron acceptor, some species will grow anaerobically.
  • Members of the Thermales are routinely isolated from hydrothermal features worldwide at freshwater and marine sites, including deep sea hydrothermal vents.

Keywords: Deinococcus; Thermus; Deinobacterium; Truepera; Meiothermus; Marinithermus; Oceanithermus; Rhabdothermus; Vulcanithermus; radioresistance; UV resistance; thermotolerance

References

Albuquerque L, Simoes C, Nobre MF, et al. (2005) Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov. FEMS Microbiology Letters 247: 161–169.

Albuquerque L, Ferreira C, Tomaz D, et al. (2009) Meiothermus rufus sp. nov., a new slightly thermophilic red‐pigmented species and emended description of the genus Meiothermus. Systematic and Applied Microbiology 32: 306–313.

Albuquerque L and da Costa MS (2014) The Family Thermaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E and Thompson F (eds) The Prokaryotes, pp. 955–987. Berlin/Heidelberg: Springer.

Anderson AW, Nordon HC, Cain RF, Parrish G and Duggan D (1956) Studies on a radio‐resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technology 10: 575–578.

Battista JR and Rainey FA (2001) Phylum BIV. "Deinococcus‐Thermus" Family 1. Deinococcaceae Brooks and Murray, 1981, 356,vp emend. Rainey et al., 1997, 513. In: Boone DR and Castenholz RW (eds) Bergey's Manual of Systematic Bacteriology, pp. 395–414. New York: Springer.

Baumeister W, Barth M, Hegerl R, et al. (1986) Three‐dimensional structure of the regular surface layer (HPI layer) of Deinococcus radiodurans. Journal of Molecular Biology 187: 241–250.

Beffa T, Blanc M, Lyon PF, et al. (1996) Isolation of Thermus strains from hot composts (60 to 80 °C). Applied and Environmental Microbiology 62: 1723–1727.

Brock TD and Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. Journal of Bacteriology 98: 289–297.

Brock TD and Boylen KL (1973) Presence of thermophilic bacteria in laundry and domestic hot‐water heater. Applied Microbiology 25: 72–76.

Brooks BW and Murray RGE (1981) Nomenclature for “Micrococcus radiodurans” and other radiation‐resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. International Journal of Systematic Bacteriology 31: 353–360.

Callegan RP, Nobre MF, McTernan PM, et al. (2008) Description of four novel psychrophilic, ionizing radiation‐sensitive Deinococcus species from alpine environments. International Journal of Systematic and Evolutionary Microbiology 58: 1252–1258.

Cha S, Srinivasan S, Seo T and Kim MK (2014) Deinococcus soli sp. nov., a gamma‐radiation‐resistant bacterium isolated from rice field soil. Current Microbiology 68: 777–783.

Chen C, Zhao S and Ben K (2003) Phylogenetic analysis of the family Thermaceae with an emphasis on signature position and secondary structure of 16S rRNA. FEMS Microbiology Letters 221: 293–298.

Collins MD and Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiological Reviews 45: 316–354.

Cox MM and Battista JR (2005) Deinococcus radiodurans ‐ the consummate survivor. Nature Reviews Microbiology 3: 882–892.

Ekman JV, Raulio M, Busse HJ, Fewer DP and Salkinoja‐Salonen M (2011) Deinobacterium chartae gen. nov., sp. nov., an extremely radiation‐resistant, biofilm‐forming bacterium isolated from a Finnish paper mill. International Journal of Systematic and Evolutionary Microbiology 61: 540–548.

Ferreira AC, Nobre MF, Rainey FA, et al. (1997) Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation‐resistant and slightly thermophilic species from hot springs. International Journal of Systematic Bacteriology 47: 939–947.

Ferreira AM, Wait R, Nobre MF and da Costa MS (1999) Characterization of glycolipids from Meiothermus spp. Microbiology 145 (Pt 5): 1191–1199.

Hensel R, Demharter W, Kandler O, Kroppenstedt RM and Stackebrandt E (1986) Chemotaxonomic and molecular‐genetic studeis of the genus Thermus: evidience of a phylogentic relationship between Thermus aquaticus and Thermus ruber to the genus Deinococcus. International Journal of Systematic Bacteriology 36: 444–453.

Hirsch P, Gallikowski CA, Siebert J, et al. (2004) Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught‐tolerating, UV‐resistant bacteria from continental Antarctica. Systematic and Applied Microbiology 27: 636–645.

Huang Y and Anderson R (1991) Phosphatidylglyceroylalkylamine, a novel phosphoglycolipid precursor in Deinococcus radiodurans. Journal of Bacteriology 173: 457–462.

Im WT, Jung HM, Ten LN, et al. (2008) Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology 58: 2348–2353.

Ivanova N, Rohde C, Munk C, et al. (2011) Complete genome sequence of Truepera radiovictrix type strain (RQ‐24). Standards in Genomic Sciences 4: 91–99.

Kim DU, Lee H, Lee JH, et al. (2015) Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air‐conditioning system. International Journal of Systematic and Evolutionary Microbiology 65: 3175–3182.

Kobatake M, Tanabe S and Hasegawa S (1973) Nouveau Micrococcus radiorésistant à pigment rouge, isolé de fèces de Llama glama, et son utilisation comme indicateur microbiologique de la radiostérilisation. Comptes Rendus des Seances de la Societe de Biologie 167: 1506–1510.

Kolari M, Nuutinen J and Salkinoja‐Salonen MS (2001) Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis. Journal of Industrial Microbiology and Biotechnology 27: 343–351.

Kristjansson JK and Alfredsson GA (1983) Distribution of Thermus spp. in Icelandic hot springs and a thermal gradient. Applied and Environmental Microbiology 45: 1785–1789.

Manaia CM and da Costa MS (1991) Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. Journal of General Microbiology 137: 2643–2648.

Marteinsson VT, Birrien JL, Raguenes G, da Costa MS and Prieur D (1999) Isolation and characterization of Thermus thermophilus Gy1211 from a deep‐sea hydrothermal vent. Extremophiles 3: 247–251.

Mattimore V and Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. Journal of Bacteriology 178: 633–637.

Maxcy RB and Rowley DB (1978) Radiation‐resistant vegetative bacteria in a proposed system of radappertization of meats. In: Food preservation by irradiation, pp. 347–359. Vienna: International Atomic Energy Agency.

Miroshnichenko ML, L'Haridon S, Jeanthon C, et al. (2003a) Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep‐sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 53: 747–752.

Miroshnichenko ML, L'Haridon S, Nercessian O, et al. (2003b) Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep‐sea hot vent. International Journal of Systematic and Evolutionary Microbiology 53: 1143–1148.

Mori K, Kakegawa T, Higashi Y, et al. (2004) Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur‐reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. International Journal of Systematic and Evolutionary Microbiology 54: 1561–1566.

Murray RG, Hall M and Thompson BG (1983) Cell division in Deinococcus radiodurans and a method for displaying septa. Canadian Journal of Microbiology 29: 1412–1423.

Murray RGE (1992) The family Deinococcaceae. In: Ballows A, Truper HG, Dworkin M, Harder W and Scheilefer KH (eds) The Prokaryotes, pp. 3732–3744. New York: Springer‐Verlag.

Nobre MF, Trüper HG and da Costa MS (1996) Transfer of Thermus ruber (Loginova et al. 1984), Thermus silvanus (Tenreiro et al. 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus. International Journal of Systematic Bacteriology 46: 604–606.

Nobre MF and da Costa MS (2001) The genus Meiothermus. In: Boone DR and Castenholtz RW (eds) Bergey's Manual of Systematic Bacteriology, pp. 411–420. New York: Springer.

Parker CT, Tindall BJ and Garrity GM (2016) International Code of Nomenclature of Prokaryotes. Prokaryotic Code (2008 Revision). International Journal of Systematic and Evolutionary Microbiology. DOI: 10.1099/ijsem.0.000778

Pask‐Hughes R and Williams RA (1975) Extremely thermophilic Gram‐negative bacteria from hot tap water. Journal of General Microbiology 88: 321–328.

Peng F, Zhang L, Luo X, et al. (2009) Deinococcus xinjiangensis sp. nov., isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology 59: 709–713.

Rainey FA, Nobre MF, Schumann P, Stackebrandt E and da Costa MS (1997) Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. International Journal of Systematic Bacteriology 47: 510–514.

Sako Y, Nakagawa S, Takai K and Horikoshi K (2003) Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep‐sea hydrothermal vent chimney. International Journal of Systematic and Evolutionary Microbiology 53: 59–65.

Scheilfer KH and Kandler O (1972) Peptidoglycan type of bacterial cell walls and their taxonomic implications. Bacteriological Reviews 36: 407–477.

Steinsbu BO, Tindall BJ, Torsvik VL, et al. (2011) Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid‐Ocean Ridge. International Journal of Systematic and Evolutionary Microbiology 61: 2197–2204.

Thompson BG and Murray RG (1981) Isolation and characterization of the plasma membrane and the outer membrane of Deinococcus radiodurans strain Sark. Canadian Journal of Microbiology 27: 729–734.

Thompson BG and Murray RGE (1982) The fenestrated peptidoglycan layer of Deinococcus radiodurans. Canadian Journal of Microbiology 28: 522–525.

Thornley MJ, Horne RW and Glauert AM (1965) The fine structure of Micrococcus radiodurans. Archiv für Mikrobiologie 51: 267–289.

Vaishampayan P, Roberts AH, Augustus A, et al. (2014) Deinococcus phoenicis sp. nov., an extreme ionizing‐radiation‐resistant bacterium isolated from the Phoenix Lander assembly facility. International Journal of Systematic and Evolutionary Microbiology 64: 3441–3446.

Wait R, Carreto L, Nobre MF, Ferreira AM and da Costa MS (1997) Characterization of novel long‐chain 1,2‐diols in Thermus species and demonstration that Thermus strains contain both glycerol‐linked and diol‐linked glycolipids. Journal of Bacteriology 179: 6154–6162.

Weisburg WG, Giovannoni SJ and Woese CR (1989) The Deinococcus‐Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Systematic and Applied Microbiology 11: 128–134.

White O, Eisen JA, Heidelberg JF, et al. (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571–1577.

Woese CR, Stackebrandt E, Macke TJ and Fox GE (1985) A phylogenetic definition of the major eubacterial taxa. Systematic and Applied Microbiology 6: 143–151.

Yang YL, Yang FL, Jao SC, et al. (2006) Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. Journal of Lipid Research 47: 1823–1832.

Yang Y, Itoh T, Yokobori S, et al. (2009) Deinococcus aerius sp. nov., isolated from the high atmosphere. International Journal of Systematic and Evolutionary Microbiology 59: 1862–1866.

Yang Y, Itoh T, Yokobori S, et al. (2010) Deinococcus aetherius sp. nov., isolated from the stratosphere. International Journal of Systematic and Evolutionary Microbiology 60: 776–779.

Yuan M, Zhang W, Dai S, et al. (2009) Deinococcus gobiensis sp. nov., an extremely radiation‐resistant bacterium. International Journal of Systematic and Evolutionary Microbiology 59: 1513–1517.

Yuan M, Chen M, Zhang W, et al. (2012) Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: insights into the extreme environmental adaptations. PLoS One 7: e34458.

Zhang L, Qin BF, Wang Y and Fang CX (2011) Deinococcus soli sp. nov., a gamma‐ and UV‐radiation‐resistant bacterium from north‐west China. Mikrobiologiia 80: 818–825.

Further Reading

Cava F, Hidalgo A and Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13: 213–231.

Henne A, Brüggemann H, Raasch C, et al. (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nature Biotechnology 22: 547–553.

Makarova KS, Aravind L, Wolf YI, et al. (2001) Genome of the extremely radiation‐resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiology and Molecular Biology Reviews 65: 44–79.

Omelchenko MV, Wolf YI, Gaidamakova EK, et al. (2005) Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance. BMC Evolutionary Biology 5: 57.

Sharp R and Williams RAD (1995) Thermus Species. New York: Plenum Press.

Slade D and Radman M (2011) Oxidative stress resistance in Deinococcus radiodurans. Microbiology and Molecular Biology Reviews 75: 133–191.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Battista, John R(Jul 2016) Deinococcus–Thermus Group. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0021151]