Frontal Lobe Disorders: Frontotemporal Dementia (Pick Disease)

Abstract

Frontotemporal dementia (FTD) is a neurodegenerative disorder that clinically relates to three distinct phenotypes, behavioural variant FTD, semantic dementia (SD) and progressive nonfluent aphasia (PNFA), each is associated with focal atrophy. The clinical syndromes observed in these illnesses, encompassing diverse symptoms including loss of social skills, apathy, disinhibition, repetitive and compulsive behaviours, progressive inability to represent the self and others, loss of word meaning, and inability to express oneself, are determined by injury to specific anatomical structures. Frontotemporal lobar degeneration (FTLD) is the pathological term that encompasses all three syndromes. Ubiquitin and tau are two different pathological substrates that have been implicated in these syndromes and their anatomical predilection determines the phenotype. The genetics associated with FTD have also proven to be more diverse than anticipated. These illnesses provide a unique opportunity to investigate clinicoanatomical relationships for specific symptoms.

Key concepts

  • Frontotemporal dementia (FTD) is a clinical term that encompasses a heterogeneous group of patients that share focal degeneration within the anterior frontal, temporal and insular regions. This term includes: behavioural variant of FTD (bvFTD), progressive nonfluent aphasia (PNFA) and semantic dementia (SD).

  • Frontotemporal lobar degeneration (FTLD) is the pathological term that encompasses all three syndromes.

  • Behavioural variant frontotemporal dementia (bvFTD) leads to a change in personality and behaviour.

  • PNFA is a disorder of nonfluent speech and language.

  • SD is a disorder of semantic knowledge for words.

  • FTD is the second most common dementia in those less than 65 years of age as it accounts for 5–6% of all dementias and is responsible for up to 17% of early onset (<70 years) dementias in autopsy series.

  • bvFTD is associated with loss of grey matter in the frontal and temporal lobes – in particular, the ventromedial frontal cortex, the posterior orbital frontal regions, the insula bilaterally and the anterior cingulate cortex.

  • SD displays progressive anterior temporal atrophy with clinical syndrome determined by the side of the brain with the greatest atrophy. Left‐predominant cases present as a fluent, anomic aphasia whereas right anterior temporal atrophy present with a behavioural syndrome characterized by a flat affect, emotional blunting and alterations in social conduct plus deficits in empathy and inability to recognize people's emotions.

  • PNFA is characterized anatomically by left perisylvian atrophy, in particular, atrophy of the left frontal operculum (Broca areas 44, 45 and 47).

  • FTLD can be classified into three main pathological subtypes based on the pattern of neuronal and glial inclusion: (1) Tau‐positive pathology with or without inclusions (Pick disease and related disorders); (2) Tau‐negative, ubiquitin (Ub)‐positive inclusions (includes FTD‐MND) and (3) Tau‐negative, Ub‐negative pathology (dementia lacking distinctive histology). Ubiquitinated inclusions make up the most common FTLD subtype seen

Keywords: frontotemporal dementia; semantic dementia; progressive nonfluent aphasia; progranulin; tdp‐43

Figure 1.

Heterogeneity of atrophy in FTLD subtypes. T1‐weighted MRI scans of four patients. Images are oriented radiologically. (a) and (b) Coronal slices in two patients with SD with asymmetric temporal lobe atrophy: left>right in (a) and right>left in (b). (c) Sagittal slice in patient with bvFTD with marked frontal atrophy with relative sparing of parietal and occipital regions. The anterior corpus callosum is also significantly atrophied compared with more posterior sections. (d) Coronal slice in a patient with PNFA showing left perisylvian atrophy.

Figure 2.

(a) Von Economo neurons (VEN) in anterior cingulate cortex (ACC). (b) Higher magnification in ACC. Arrow indicates a VEN. Scale bars: 40 μ in (a), 20 μ in (b). Kindly provided by Dr William W. Seeley.

close

References

Adolphs R, Tranel D, Damasio H et al. (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372(6507): 669–672.

Agosta F, Vossel KA, Miller BL et al. (2009) Apolipoprotein E ε4 is associated with disease‐specific effects on brain atrophy in Alzheimer's disease and frontotemporal dementia. Proceedings of the National Academy of Sciences of the USA 106(6): 2018–2022.

Ahmed Z, Mackenzie IR, Hutton ML et al. (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. Journal of Neuroinflammation 4: 7.

Allman JM, Watson KK, Tetreault NA et al. (2005) Intuition and autism: a possible role for Von Economo neurons. Trends in Cognitive Sciences 9(8): 367–373.

Amador‐Ortiz C, Lin WL, Ahmed Z et al. (2007) TDP‐43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Annals of Neurology 61(5): 435–445.

Arai T, Hasegawa M, Akiyama H et al. (2006) TDP‐43 is a component of ubiquitin‐positive tau‐negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications 351(3): 602–611.

Baker M, Mackenzie IR, Pickering‐Brown SM et al. (2006) Mutations in progranulin cause tau‐negative frontotemporal dementia linked to chromosome 17. Nature 442(7105): 916–919.

Barker WW, Luis CA, Kashuba A et al. (2002) Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Disease and Associated Disorders 16(4): 203–212.

Barnes J, Whitwell J, Frost C et al. (2006) Measurements of the Amygdala and Hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Archives of Neurology 63: 1434–1439.

Beck J, Rohrer JD, Campbell T et al. (2008) A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 131(Pt 3): 706–720.

Bigio EH (2008) Update on recent molecular and genetic advances in frontotemporal lobar degeneration. Journal of Neuropathology and Experimental Neurology 67(7): 635–648.

Bigio EH, Lipton AM, White 3rd CL et al. (2003) Frontotemporal and motor neurone degeneration with neurofilament inclusion bodies: additional evidence for overlap between FTD and ALS. Neuropathology and Applied Neurobiology 29(3): 239–253.

Boeve BF, Lang AE and Litvan I (2003) Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Annals of Neurology 54(suppl. 5): S15–S19.

Brun A (1987) Frontal lobe degeneration of non‐Alzheimer type. I. Neuropathology. Archives of Gerontology and Geriatrics 6(3): 193–208.

Brun A (1993) Frontal lobe degeneration of non‐Alzheimer type revisited. Dementia 4(3–4): 126–131.

Bugiani O (2007) The many ways to frontotemporal degeneration and beyond. Neurological Science 28(5): 241–244.

Buratti E and Baralle FE (2008) Multiple roles of TDP‐43 in gene expression, splicing regulation, and human disease. Frontiers of Bioscience 13: 867–878.

Buratti E, Brindisi A, Pagani F et al. (2004) Nuclear factor TDP‐43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. American Journal Human Genetics 74(6): 1322–1325.

Buratti E, Dork T, Zuccato E et al. (2001) Nuclear factor TDP‐43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO Journal 20(7): 1774–1784.

Chow TW, Miller BL, Hayashi VN et al. (1999) Inheritance of frontotemporal dementia. Archives of Neurology 56(7): 817–822.

Cooper PN, Jackson M, Lennox G et al. (1995) Tau, ubiquitin, and alpha B‐crystallin immunohistochemistry define the principal causes of degenerative frontotemporal dementia. Archives of Neurology 52(10): 1011–1015.

Cruts M, Gijselinck I and van der Zee J (2006a) Null mutations in progranulin cause ubiquitin‐positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105): 920–924.

Cruts M, Kumar‐Singh S and Van Broeckhoven C (2006b) Progranulin mutations in ubiquitin‐positive frontotemporal dementia linked to chromosome 17q21. Current Alzheimer Research 3(5): 485–491.

Davies RR, Hodges JR, Kril JJ et al. (2005) The pathological basis of semantic dementia. Brain 128(part 9): 1984–1995.

von Economo C and Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Textband und Atlas. Wien: Springer.

Feany MB, Mattiace LA and Dickson DW (1996) Neuropathologic overlap of progressive supranuclear palsy, Pick's disease and corticobasal degeneration. J Neuropathol Exp Neurol 55(1): 53–67.

Folstein MF, Folstein SE and McHugh PR (1975) “Mini‐mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3): 189–198.

Foster NL, Wilhelmsen K, Sima AA et al. (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Annals of Neurology 41(6): 706–715.

Fukui T and Kertesz A (2000) Volumetric study of lobar atrophy in Pick complex and Alzheimer's disease. Journal of Neurological Science 174(2): 111–121.

Gass J, Cannon A, Mackenzie IR et al. (2006) Mutations in progranulin are a major cause of ubiquitin‐positive frontotemporal lobar degeneration. Human Molecular Genetics 15(20): 2988–3001.

Geschwind D, Karrim J, Nelson SF et al. (1998) The apolipoprotein E epsilon4 allele is not a significant risk factor for frontotemporal dementia. Annals of Neurology 44(1): 134–138.

Goedert M, Ghetti B and Spillantini MG (2000) Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP‐17). Their relevance for understanding the neurogenerative process. Annals of New York Academic Science 920: 74–83.

Goldman JS, Farmer JM, Van Deerlin VM et al. (2004) Frontotemporal dementia: genetics and genetic counseling dilemmas. Neurologist 10(5): 227–234.

Gorno‐Tempini ML, Dronkers NF, Rankin KP et al. (2004a) Cognition and anatomy in three variants of primary progressive aphasia. Annal of Neurology 55(3): 335–346.

Gorno‐Tempini ML, Ogar JM, Brambati SM et al. (2006) Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology 67(10): 1849–1851.

Gorno‐Tempini ML, Rankin KP, Woolley JD et al. (2004b) Cognitive and behavioral profile in a case of right anterior temporal lobe neurodegeneration. Cortex 40(4–5): 631–644.

Gregory CA, Serra‐Mestres J and Hodges JR (1999) Early diagnosis of the frontal variant of frontotemporal dementia: how sensitive are standard neuroimaging and neuropsychologic tests? Neuropsychiatry, Neuropsychology, and Behavioral Neurology 12(2): 128–135.

Gustafson L (1987) Frontal lobe degeneration of non‐Alzheimer type. II. Clinical picture and differential diagnosis. Archives of Gerontology and Geriatrics 6(3): 209–223.

Gustafson L (1993) Clinical picture of frontal lobe degeneration of non‐Alzheimer type. Dementia 4(3–4): 143–148.

Harlow J (1868) Recovery from a passage of an iron bar through the head. Publ Mass Med Soc 2: 327–347.

Hasegawa M, Arai T, Akiyama H et al. (2007) TDP‐43 is deposited in the Guam parkinsonism‐dementia complex brains. Brain 130(part 5): 1386–1394.

Hasegawa M, Smith MJ, Iijima M et al. (1999) FTDP‐17 mutations N279K and S305N in tau produce increased splicing of exon 10. FEBS Letters 443(2): 93–96.

Hodges JR, Davies R, Xuereb J et al. (2003) Survival in frontotemporal dementia. Neurology 61(3): 349–354.

Hodges JR and Miller B (2001a) The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: Part I. Neurocase 7(1): 31–35.

Hodges JR and Miller B (2001b) The neuropsychology of frontal variant frontotemporal dementia and semantic dementia. Introduction to the special topic papers: Part II. Neurocase 7(2): 113–121.

Hodges JR and Patterson K (1996) Nonfluent progressive aphasia and semantic dementia: A comparative neuropsychological study. Journal of the International Neuropsychological Society 2: 511–524.

Hof PR, Glezer II, Conde F et al. (1999) Cellular distribution of the calcium‐binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. Journal of Chemical Neuroanatomy 16(2): 77–116.

Huey ED, Grafman J, Wassermann EM et al. (2006) Characteristics of frontotemporal dementia patients with a Progranulin mutation. Annals of Neurology 60(3): 374–380.

Jackson M, Lennox G and Lowe J (1996) Motor neurone disease‐inclusion dementia. Neurodegeneration 5(4): 339–350.

Johnson JK, Diehl J, Mendez MF et al. (2005) Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Archives of Neurology 62(6): 925–930.

Josephs KA, Ahmed Z, Katsuse O et al. (2007) Neuropathologic features of frontotemporal lobar degeneration with ubiquitin‐positive inclusions with progranulin gene (PGRN) mutations. Journal of Neuropathology and Experimental Neurology 66(2): 142–151.

Josephs KA and Dickson DW (2007) Hippocampal sclerosis in tau‐negative frontotemporal lobar degeneration. Neurobiological Aging 28(11): 1718–1722.

Josephs KA, Duffy JR, Strand EA et al. (2006a) Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129(part 6): 1385–1398.

Josephs KA, Holton JL, Rossor MN et al. (2004a) Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathology and Applied Neurobiology 30(4): 369–373.

Josephs KA, Jones AG and Dickson DW (2004b) Hippocampal sclerosis and ubiquitin‐positive inclusions in dementia lacking distinctive histopathology. Dementia and Geriatric Cognitive Disorders 17(4): 342–345.

Josephs KA, Petersen RC, Knopman DS et al. (2006b) Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 66(1): 41–48.

Josephs KA, Whitwell JL, Knopmann DS et al. (2008) Abnormal TDP‐43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70(19 part 2): 1850–1857.

Knopman DS, Mastri AR, Frey 2nd WH et al. (1990) Dementia lacking distinctive histologic features: a common non‐Alzheimer degenerative dementia. Neurology 40(2): 251–256.

Kril JJ and Halliday GM (2004) Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dementia and Geriatric Cognitive Disorders 17(4): 311–315.

Le Ber I, Camuzat A, Hannequin D et al. (2008) Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 131(part 3): 732–746.

Lipton AM, White CL 3rd et al. (2004) Frontotemporal lobar degeneration with motor neuron disease‐type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathology 108(5): 379–385.

Liu W, Miller BL, Kramer JH et al. (2004) Behavioral disorders in the frontal and temporal variants of frontotemporal dementia. Neurology 62(5): 742–748.

Lomen‐Hoerth C, Anderson T and Miller B (2002) The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59(7): 1077–1079.

Lomen‐Hoerth C, Murphy J, Langmore S et al. (2003) Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 60(7): 1094–1097.

Mackenzie IR (2007) The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathology 114(1): 49–54.

Mackenzie IR, Baborie A, Pickering‐Brown S et al. (2006a) Heterogeneity of ubiquitin pathology in frontotemporal lobar degeneration: classification and relation to clinical phenotype. Acta Neuropathology 112(5): 539–549.

Mackenzie IR, Baker M, Pickering‐Brown S et al. (2006b) The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain 129(part 11): 3081–3090.

McKhann GM, Albert MS, Grossman M et al. (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Archives of Neurology 58(11): 1803–1809.

Mendez MF, Chen AK, Shapira JS et al. (2005) Acquired sociopathy and frontotemporal dementia. Dementia and Geriatric Cognitive Disorders 20(2–3): 99–104.

Miller BL (2007) Frontotemporal dementia and semantic dementia: anatomic variations on the same disease or distinctive entities? Alzheimer Disease and Associated Disorders 21(4): S19–S22.

Miller BL, Cummings JL, Villanueva‐Meyer J et al. (1991) Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology 41(9): 1374–1382.

Miller BL, Darby A, Benson DF et al. (1997a) Aggressive, socially disruptive and antisocial behaviour associated with fronto‐temporal dementia. British Journal of Psychiatry 170: 150–154.

Miller BL, Darby AL, Swartz JR et al. (1995) Dietary changes, compulsions and sexual behavior in frontotemporal degeneration. Dementia 6(4): 195–199.

Miller BL, Ikonte C, Ponton M et al. (1997b) A study of the Lund–Manchester research criteria for frontotemporal dementia: clinical and single‐photon emission CT correlations. Neurology 48(4): 937–942.

Miller BL, Seeley WW, Mychack P et al. (2001) Neuroanatomy of the self: evidence from patients with frontotemporal dementia. Neurology 57(5): 817–821.

Mychack P, Kramer JH, Boone KB et al. (2001) The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology 56(11 suppl. 4): S11–S15.

Nakashima‐Yasuda H, Uryu K, Robinson J et al. (2007) Co‐morbidity of TDP‐43 proteinopathy in Lewy body related diseases. Acta Neuropathology 114(3): 221–229.

Neary D, Snowden JS, Gustafson L et al. (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6): 1546–1554.

Neary D, Snowden JS, Northen B et al. (1988) Dementia of frontal lobe type. Journal of Neurology, Neurosurgery, and Psychiatry 51(3): 353–361.

Neumann M, Sampathu DM, Kwong LK et al. (2006) Ubiquitinated TDP‐43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796): 130–133.

Nimchinsky EA, Gilissen E, Allman JM et al. (1999) A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences of the USA 96(9): 5268–5273.

Phillips ML, Drevets WC, Rauch SL et al. (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biological Psychiatry 54(5): 504–514.

Pick A (1892) Ueber die Beziehungen der senilen Hirnatrophie zur Aphasie. Pragmatische Medizinsche Wehnschrift 17: 165–167.

Poorkaj P, Bird TD, Wijsman E et al. (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology 43(6): 815–825.

Rabinovici GD, Rascovsky K and Miller BL (2008) Frontotemporal lobar degeneration: clinical and pathologic overview. Handbook of Clinical Neurology 89: 343–364.

Rabinovici GD, Seeley WW, Kim EJ et al. (2007) Distinct MRI atrophy patterns in autopsy‐proven Alzheimer's disease and frontotemporal lobar degeneration. American Journal of Alzheimer's Disease and Other Dementias 22(6): 474–488.

Rademakers R and Hutton M (2007) The genetics of frontotemporal lobar degeneration. Current Neurology and Neuroscience Reports 7(5): 434–442.

Ratnavalli E, Brayne C, Dawson K et al. (2002) The prevalence of frontotemporal dementia. Neurology 58(11): 1615–1621.

Roberson ED, Hesse JH, Rose KD et al. (2005) Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology 65(5): 719–725.

Rohrer JD, Warren JD, Barnes J et al. (2008a) Mapping the progression of progranulin‐associated frontotemporal lobar degeneration. Nature Clinical Practice. Neurology 4(8): 455–460.

Rohrer JD, Warren JD, Omar R et al. (2008b) Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. Archives of Neurology 65(4): 506–513.

Rosen HJ, Allison SC, Schauer GF et al. (2005) Neuroanatomical correlates of behavioural disorders in dementia. Brain 128(part 11): 2612–2625.

Rosen HJ, Gorno‐Tempini ML, Goldman WP et al. (2002a) Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology 58(2): 198–208.

Rosen HJ, Perry RJ, Murphy J et al. (2002b) Emotion comprehension in the temporal variant of frontotemporal dementia. Brain 125(part 10): 2286–2295.

Rosen HJ, Wilson MR, Schauer GF et al. (2006) Neuroanatomical correlates of impaired recognition of emotion in dementia. Neuropsychologia 44(3): 365–373.

Sampathu DM, Neumann M, Kwong LK et al. (2006) Pathological heterogeneity of frontotemporal lobar degeneration with ubiquitin‐positive inclusions delineated by ubiquitin immunohistochemistry and novel monoclonal antibodies. American Journal of Pathology 169(4): 1343–1352.

Seelaar H, Kamphorst W, Rosso SM et al. (2008) Distinct genetic forms of frontotemporal dementia. Neurology 71(16): 1220–1226.

Seeley WW, Bauer AM, Miller BL et al. (2005) The natural history of temporal variant frontotemporal dementia. Neurology 64(8): 1384–1390.

Seeley WW, Carlin DA, Allman D et al. (2006) Early frontotemporal dementia targets neurons unique to apes and humans. Annals of Neurology 60(6): 660–667.

Seeley WW, Crawford R, Rascovsky K et al. (2008) Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology 65(2): 249–255.

Snowden JS, Bathgate D, Varma D et al. (2001) Distinct behavioural profiles in frontotemporal dementia and semantic dementia. Journal of Neurology, Neurosurgery, and Psychiatry 70(3): 323–332.

Spillantini MG and Goedert M (2000) Tau mutations in familial frontotemporal dementia. Brain 123(part 5): 857–859.

Spillantini MG, Murrell JR, Goedert D et al. (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences of the USA 95(13): 7737–7741.

Spillantini MG, Van Swieten JC and Goedert M (2000) Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP‐17). Neurogenetics 2(4): 193–205.

Strong MJ, Lomen‐Hoerth C, Caselli RJ et al. (2003) Cognitive impairment, frontotemporal dementia, and the motor neuron diseases. Annals of Neurology 54(suppl. 5): S20–S23.

Swartz JR, Miller BL, Lesser IM et al. (1997) Behavioral phenomenology in Alzheimer's disease, frontotemporal dementia, and late‐life depression: a retrospective analysis. Journal of Geriatric Psychiatry and Neurology 10(2): 67–74.

The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry 57(4): 416–418.

Thompson PM, Hayashi KM, de Zubicaray G et al. (2003) Dynamics of gray matter loss in Alzheimer's disease. Journal of Neuroscience 23(3): 994–1005.

Uryu K, Nakashima‐Yasuda H, Forman MS et al. (2008) Concomitant TAR‐DNA‐binding protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. Journal of Neuropathology and Experimental Neurology 67(6): 555–564.

Whitwell JL, Josephs KA, Rossor MN et al. (2005) Magnetic resonance imaging signatures of tissue pathology in frontotemporal dementia. Archives of Neurology 62(9): 1402–1408.

Wilhelmsen KC, Clark LN, Miller BL et al. (1999) Tau mutations in frontotemporal dementia. Dementia and Geriatric Cognitive Disorders 10(suppl. 1): 88–92.

Wilhelmsen KC, Lynch T, Pavlou E et al. (1994) Localization of disinhibition‐dementia‐parkinsonism‐amyotrophy complex to 17q21‐22. American Journal of Human Genetics 55(6): 1159–1165.

Woolley JD, Gorno‐Tempini ML, Seeley WW et al. (2007) Binge eating is associated with right orbitofrontal‐insular‐striatal atrophy in frontotemporal dementia. Neurology 69(14): 1424–1433.

Further Reading

Brambati SM, Rankin KP, Narvid J et al. (2009) Atrophy progression in semantic dementia with asymmetric temporal involvement: a tensor‐based morphometry study. Neurobiological Aging 30(1): 103–111. Epub 2007 July 2.

Cairns NJ, Bigio EH, Mackenzie IR et al. (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathology 114(1): 5–22. Epub June 20.

Lladó A, Sánchez‐Valle R, Rey MJ et al. (2008) Clinicopathological and genetic correlates of frontotemporal lobar degeneration and corticobasal degeneration. Journal of Neurology 255(4): 488–494. Epub March 25.

Miller BL, Seeley WW, Mychack P et al. (2001) Neuroanatomy of the self: evidence from patients with frontotemporal dementia. Neurology 57(5): 817–821.

Rademakers R, Baker M, Gass J et al. (2007) Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurology 6(10): 857–868. Erratum in: Lancet Neurology. 6(12): 1037.

Rascovsky K, Hodges JR, Kipps CM et al. (2007) Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer Disease and Associated Disorders 21(4): S14–S18. Review.

Seeley WW, Matthews BR, Crawford RK et al. (2008) Unravelling Boléro: progressive aphasia, transmodal creativity and the right posterior neocortex. Brain 131(part 1): 39–49. Epub 2007 December 5.

Snowden J, Neary D and Mann D (2007) Frontotemporal lobar degeneration: clinical and pathological relationships. Acta Neuropathology 114(1): 31–38. Epub June 14. Review.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Carmela Tartaglia, Maria, and Miller, Bruce(Sep 2009) Frontal Lobe Disorders: Frontotemporal Dementia (Pick Disease). In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0021409]