| References |
|
|
Alber B,
Olinger M,
Rieder A et al.
(2006)
Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp.
Journal of Bacteriology
188:
85518559.
|
|
|
Alber BE and
Fuchs G
(2002)
Propionyl-coenzyme A synthase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation.
Journal of Biological Chemistry
277:
1213712143.
|
|
|
Aoshima M and
Igarashi Y
(2006)
A novel oxalosuccinate-forming enzyme involved in the reductive carboxylation of 2-oxoglutarate in Hydrogenobacter thermophilus TK-6.
Molecular Microbiology
62:
748759.
|
|
|
Aoshima M,
Ishii M and
Igarashi Y
(2004a)
A novel biotin protein required for reductive carboxylation of 2-oxoglutarate by isocitrate dehydrogenase in Hydrogenobacter thermophilus TK-6.
Molecular Microbiology
51:
791798.
|
|
|
Aoshima M,
Ishii M and
Igarashi Y
(2004b)
A novel enzyme, citryl-CoA lyase, catalysing the second step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6.
Molecular Microbiology
52:
763770.
|
|
|
Aoshima M,
Ishii M and
Igarashi Y
(2004c)
A novel enzyme, citryl-CoA synthetase, catalysing the first step of the citrate cleavage reaction in Hydrogenobacter thermophilus TK-6.
Molecular Microbiology
52:
751761.
|
|
|
Ashida H,
Saito Y,
Kojima C et al.
(2003)
A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO.
Science
302:
286290.
|
|
|
Bassham JA,
Benson AA,
Kay LD et al.
(1953)
The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor.
Journal of the American Chemical Society
76:
17601770.
|
|
|
Berg IA,
Kockelkorn D,
Buckel W and
Fuchs G
(2007)
A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
Science
318:
17821786.
|
|
|
Eisenreich W,
Strauss G,
Werz U,
Fuchs G and
Bacher A
(1993)
Retrobiosynthetic analysis of carbon fixation in the phototrophic eubacterium Chloroflexus aurantiacus.
European Journal of Biochemistry
215:
619632.
|
|
|
Evans MC,
Buchanan BB and
Arnon DI
(1966)
A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium.
Proceedings of the National Academy of Sciences of the USA
55:
928934.
|
|
|
Ezaki S,
Maeda N,
Kishimoto T,
Atomi H and
Imanaka T
(1999)
Presence of a structurally novel type ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic archaeon, Pyrococcus kodakaraensis KOD1.
Journal of Biological Chemistry
274:
50785082.
|
|
|
Friedmann S,
Alber BE and
Fuchs G
(2007)
Properties of R-citramalyl-coenzyme A lyase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus.
Journal of Bacteriology
189:
29062914.
|
|
|
Hartman FC and
Harpel MR
(1994)
Structure, function, regulation, and assembly of d-ribulose-1,5-bisphosphate carboxylase/oxygenase.
Annual Review of Biochemistry
63:
197234.
|
|
|
Hartman FC,
Stringer CD and
Lee EH
(1984)
Complete primary structure of ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum.
Archives of Biochemistry and Biophysics
232:
280295.
|
|
|
Herter S,
Busch A and
Fuchs G
(2002a)
l-Malyl-coenzyme A lyase/-methylmalyl-coenzyme A lyase from Chloroflexus aurantiacus, a bifunctional enzyme involved in autotrophic CO2 fixation.
Journal of Bacteriology
184:
59996006.
|
|
|
Herter S,
Farfsing J,
Gad'On N et al.
(2001)
Autotrophic CO2 fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle.
Journal of Bacteriology
183:
43054316.
|
|
|
Herter S,
Fuchs G,
Bacher A and
Eisenreich W
(2002b)
A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus.
Journal of Biological Chemistry
277:
2027720283.
|
|
|
Holo H
(1989)
Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate.
Archives of Microbiology
151:
252256.
|
|
|
Hu SI,
Drake HL and
Wood HG
(1982)
Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum.
Journal of Bacteriology
149:
440448.
|
|
|
Huber H,
Gallenberger M,
Jahn U et al.
(2008)
A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.
Proceedings of the National Academy of Sciences of the USA
105:
78517856.
|
|
|
Hügler M,
Huber H,
Stetter KO and
Fuchs G
(2003a)
Autotrophic CO2 fixation pathways in archaea (Crenarchaeota).
Archives of Microbiology
179:
160173.
|
|
|
Hügler M,
Krieger RS,
Jahn M and
Fuchs G
(2003b)
Characterization of acetyl-CoA/propionyl-CoA carboxylase in Metallosphaera sedula. Carboxylating enzyme in the 3-hydroxypropionate cycle for autotrophic carbon fixation.
European Journal of Biochemistry
270:
736744.
|
|
|
Hügler M,
Menendez C,
Schagger H and
Fuchs G
(2002)
Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO2 fixation.
Journal of Bacteriology
184:
24042410.
|
|
|
Ikeda T,
Ochiai T,
Morita S et al.
(2006)
Anabolic five subunit-type pyruvate:ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6.
Biochemical and Biophysical Research Communications
340:
7682.
|
|
|
Jahn U,
Huber H,
Eisenreich W,
Hügler M and
Fuchs G
(2007)
Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism.
Journal of Bacteriology
189:
41084119.
|
|
|
Kanao T,
Fukui T,
Atomi H and
Imanaka T
(2001)
ATP-citrate lyase from the green sulfur bacterium Chlorobium limicola is a heteromeric enzyme composed of two distinct gene products.
European Journal of Biochemistry
268:
16701678.
|
|
|
Kanao T,
Fukui T,
Atomi H and
Imanaka T
(2002a)
Kinetic and biochemical analyses on the reaction mechanism of a bacterial ATP-citrate lyase.
European Journal of Biochemistry
269:
34093416.
|
|
|
Kanao T,
Kawamura M,
Fukui T,
Atomi H and
Imanaka T
(2002b)
Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. A carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle.
European Journal of Biochemistry
269:
19261931.
|
|
|
Kitano K,
Maeda N,
Fukui T et al.
(2001)
Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry.
Structure
9:
473481.
|
|
|
Kockelkorn D and
Fuchs G
(2009)
Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales.
Journal of Bacteriology
191:
63526362.
|
|
|
Maeda N,
Kitano K,
Fukui T et al.
(1999)
Ribulose bisphosphate carboxylase/oxygenase from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 is composed solely of large subunits and forms a pentagonal structure.
Journal of Molecular Biology
293:
5766.
|
|
|
Miura A,
Kameya M,
Arai H,
Ishii M and
Igarashi Y
(2008)
A soluble NADH-dependent fumarate reductase in the reductive tricarboxylic acid cycle of Hydrogenobacter thermophilus TK-6.
Journal of Bacteriology
190:
71707177.
|
|
|
Paoli GC,
Morgan NS,
Tabita FR and
Shively JM
(1995)
Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus.
Archives of Microbiology
164:
396405.
|
|
|
Pezacka E and
Wood HG
(1986)
The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase.
Journal of Biological Chemistry
261:
16091615.
|
|
|
Ramos-Vera WH,
Berg IA and
Fuchs G
(2009)
Autotrophic carbon dioxide assimilation in Thermoproteales revisited.
Journal of Bacteriology
191:
42864297.
|
|
|
Sato T,
Atomi H and
Imanaka T
(2007)
Archaeal type III RuBisCOs function in a pathway for AMP metabolism.
Science
315:
10031006.
|
|
|
Schauder R,
Widdel F and
Fuchs G
(1987)
Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus.
Archives of Microbiology
148:
218225.
|
|
|
Shiba H,
Kawasumi T,
Igarashi Y,
Kodama T and
Minoda Y
(1985)
The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus.
Archives of Microbiology
141:
198203.
|
|
|
Shively JM,
van Keulen G and
Meijer WG
(1998)
Something from almost nothing: carbon dioxide fixation in chemoautotrophs.
Annual Review of Microbiology
52:
191230.
|
|
|
Strauss G and
Fuchs G
(1993)
Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle.
European Journal of Biochemistry
215:
633643.
|
|
|
Teufel R,
Kung JW,
Kockelkorn D,
Alber BE and
Fuchs G
(2009)
3-hydroxypropionyl-coenzyme A dehydratase and acryloyl-coenzyme A reductase, enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in the Sulfolobales.
Journal of Bacteriology
191:
45724581.
|
|
|
Tichi MA and
Tabita FR
(2000)
Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
Archives of Microbiology
174:
322333.
|
|
|
Walker CB,
de la Torre JR,
Klotz MG et al.
(2010)
Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.
Proceedings of the National Academy of Sciences of the USA
107:
88188823.
|
|
|
Watson GM,
Yu JP and
Tabita FR
(1999)
Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea.
Journal of Bacteriology
181:
15691575.
|
|
|
Yamamoto M,
Arai H,
Ishii M and
Igarashi Y
(2003)
Characterization of two different 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6.
Biochemical and Biophysical Research Communications
312:
12971302.
|
|
|
Yoon KS,
Hille R,
Hemann C and
Tabita FR
(1999)
Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase.
Journal of Biological Chemistry
274:
2977229778.
|
|
|
Yun NR,
Yamamoto M,
Arai H,
Ishii M and
Igarashi Y
(2002)
A novel five-subunit-type 2-oxoglutalate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6.
Biochemical and Biophysical Research Communications
292:
280286.
|
|
|
Zarzycki J,
Brecht V,
Müller M and
Fuchs G
(2009)
Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.
Proceedings of the National Academy of Sciences of the USA
106:
2131721322.
|
|
|
Zarzycki J,
Schlichting A,
Strychalsky N et al.
(2008)
Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria.
Journal of Bacteriology
190:
13661374.
|
| Further Reading |
|
|
book
Berg IA,
Kockelkorn D,
Ramos-Vera WH et al.
(2010)
"Autotrophic carbon fixation in biology: pathways, rules, and speculations".
In: Aresta M (ed)
Carbon Dioxide as Chemical Feedstock,
pp. 3353.
Hoboken, NJ: Wiley InterScience.
|
|
|
book
Fuchs G
(2009)
"Section III: Diversity of metabolic pathways".
In: Lengeler JW,
Drews G and
Schlegel HG (eds)
Biology of the Prokaryotes.
Hoboken, NJ: Wiley InterScience.
|
|
|
book
Thauer RK and
Shima S
(2007)
"Methyl-coenzyme M reductase in methanogens and methanotrophs".
In: Garrett RA and
Klenk H-P (eds)
Archaea: Evolution, Physiology, and Molecular Biology,
1st edn.
Hoboken, NJ: Wiley InterScience.
|