| References |
|
|
Adin DM,
Engle JT,
Goldman WE,
McFall‐Ngai MJ and
Stabb EV
(2009)
Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri.
Journal of Bacteriology
191:
2012–2022.
|
|
|
Amoroso A,
Boudet J,
Berzigotti S et al.
(2012)
A peptidoglycan fragment triggers β‐lactam resistance in Bacillus licheniformis.
PLoS Pathogens
8:
e1002571.
|
|
|
Artola‐Recolons C,
Carrasco‐Lopez C,
Llarrull LI et al.
(2011)
High‐resolution crystal structure of MltE, an outer membrane‐anchored endolytic peptidoglycan lytic transglycosylase from E. coli.
Biochemistry
50:
2384–2386.
|
|
|
Atilano ML,
Pereira PM,
Yates J et al.
(2010)
Teichoic acids are temporal and spatial regulators of peptidoglycan cross‐linking in Staphylococcus aureus.
Proceedings of the National Academy of Sciences of the USA
107:
18991–18996.
|
|
|
Atrih A,
Bacher G,
Allmaier G,
Williamson MP and
Foster SJ
(1999)
Analysis of peptidoglycan structure from vegetative cells of Bacillus subtilis 168 and role of PBP 5 in peptidoglycan maturation.
Journal of Bacteriology
181:
3956–3966.
|
|
|
Atrih A,
Zollner P,
Allmaier G,
Williamson MP and
Foster SJ
(1998)
Peptidoglycan structural dynamics during germination of Bacillus subtilis 168 endospores.
Journal of Bacteriology
180:
4603–4612.
|
|
|
Bacik JP,
Whitworth GE,
Stubbs KA et al.
(2011)
Molecular basis of 1,6‐anhydro bond cleavage and phosphoryl transfer by Pseudomonas aeruginosa 1,6‐anhydro‐N‐acetylmuramic acid kinase.
Journal of Biological Chemistry
286:
12283–12291.
|
|
|
Boothby D,
Daneo‐Moore L,
Higgins ML,
Coyette J and
Shockman GD
(1973)
Turnover of bacterial cell wall peptidoglycans.
Journal of Biological Chemistry
248:
2161–2169.
|
|
|
Boudreau MA,
Fisher JF and
Mobashery SS
(2012)
Messenger functions of the bacterial cell wall‐derived muropeptides.
Biochemistry
51:
2974–2990.
|
|
|
Chaloupka J,
Rihova L and
Kreckova P
(1964)
Degradation and turnover of bacterial cell wall mucopeptides in growing bacteria.
Folia Microbiologica (Praha)
24:
9–15.
|
|
|
Chan YA,
Hackett KT and
Dillard JP
(2012)
The lytic transglycosylases of Neisseria gonorrhoeae.
Microbial Drug Resistance in press.
|
|
|
Chen R,
Guttenplan SB,
Blair KM and
Kearns DB
(2009)
Role of the sigma D‐dependent autolysins in Bacillus subtilis population heterogeneity.
Journal of Bacteriology
191:
5775–5784.
|
|
|
Claverys JP and
Havarstein LS
(2007)
Cannibalism and fratricide: mechanisms and raisons d'etre.
Nature Review of Microbiology
5:
219–229.
|
|
|
Cloud‐Hansen KA,
Peterson SB,
Stabb EV et al.
(2006)
Breaching the great wall: peptidoglycan and microbial interactions.
Nature Review of Microbiology
4:
710–716.
|
|
|
Dubrac S,
Bisicchia P,
Devine KM and
Msadek T
(2008)
A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway.
Molecular Microbiology
70:
1307–1322.
|
|
|
Eldholm V,
Johnsborg O,
Haugen K,
Ohnstad HS and
Havarstein LS
(2009)
Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC.
Microbiology
155:
2223–2234.
|
|
|
Fabret C and
Hoch JA
(1998)
A two‐component signal transduction system essential for growth of Bacillus subtilis: implications for anti‐infective therapy.
Journal of Bacteriology
180:
6375–6383.
|
|
|
Fukushima T,
Kitajima T,
Yamaguchi H et al.
(2008)
Identification and characterization of novel cell wall hydrolase CwlT: a two‐domain autolysin exhibiting N‐acetylmuramidase and D,L‐endopeptidase activities.
Journal of Biological Chemistry
283:
11117–11125.
|
|
|
Goodell EW
(1985)
Recycling of murein by E. coli.
Journal of Bacteriology
163:
305–310.
|
|
|
Goodell EW and
Schwarz U
(1985)
Release of cell wall peptides into culture medium by exponentially growing E. coli.
Journal of Bacteriology
162:
391–397.
|
|
|
Hashimoto M,
Ooiwa S and
Sekiguchi J
(2011)
Synthetic lethality of the lytE cwlO genotype in Bacillus subtilis is caused by lack of D,L‐endopeptidase activity at the lateral cell wall.
Journal of Bacteriology
194:
796–803.
|
|
|
Hayhurst EJ,
Kailas L,
Hobbs JK and
Foster SJ
(2008)
Cell wall peptidoglycan architecture in Bacillus subtilis.
Proceedings of the National Academy of Sciences of the USA
105:
14603–14608.
|
|
|
van Heijenoort J
(2011)
Peptidoglycan hydrolases of E. coli.
Microbiology and Molecular Biology Reviews
75:
636–663.
|
|
|
Höltje J‐V
(1996)
A hypothetical holoenzyme involved in the replication of the murein sacculus of E. coli.
Microbiology
142(part 8):
1911–1918.
|
|
|
Höltje JV
(1998)
Growth of the stress‐bearing and shape‐maintaining murein sacculus of E. coli.
Microbiology and Molecular Biology Reviews
62:
181–203.
|
|
|
Jacobs C,
Huang LJ,
Bartowsky E,
Normark S and
Park JT
(1994)
Bacterial cell wall recycling provides cytosolic muropeptides as effectors for β‐lactamase induction.
EMBO Journal
13:
4684–4694.
|
|
|
Jaeger T and
Mayer C
(2008a)
N‐acetylmuramic acid 6‐phosphate lyases (MurNAc etherases): role in cell wall metabolism, distribution, structure, and mechanism.
Cellular and Molecular Life Sciences
65:
928–939.
|
|
|
Jaeger T and
Mayer C
(2008b)
The transcriptional factors MurR and catabolite activator protein regulate N‐acetylmuramic acid catabolism in E. coli.
Journal of Bacteriology
190:
6598–6608.
|
|
|
Kusser W and
Fiedler F
(1983)
Teichoicase from Bacillus subtilis Marburg.
Journal of Bacteriology
155:
302–310.
|
|
|
Litzinger S,
Duckworth A,
Nitzsche K et al.
(2010a)
Muropeptide rescue in Bacillus subtilis involves sequential hydrolysis by beta‐N‐acetylglucosaminidase and N‐acetylmuramyl‐L‐alanine amidase.
Journal of Bacteriology
192:
3132–3143.
|
|
|
Litzinger S,
Fischer S,
Polzer P et al.
(2010b)
Structural and kinetic analysis of Bacillus subtilis N‐acetylglucosaminidase reveals a unique Asp‐His dyad mechanism.
Journal of Biological Chemistry
285:
35675–33584.
|
|
|
book
Litzinger S and
Mayer C
(2010)
"Chapter 1: the murein sacculus".
In: König H,
Claus H and
Varma A (eds)
Prokaryotic Cell Wall Compounds – Structure and Biochemistry,
pp. 3–52.
Heidelberg: Springer.
|
|
|
Mauck J,
Chan L and
Glaser L
(1971)
Turnover of the cell wall of Gram‐positive bacteria.
Journal of Biological Chemistry
246:
1820–1817.
|
|
|
Mesnage S,
Chau F,
Dubost L and
Arthur M
(2008)
Role of N‐acetylglucosaminidase and N‐acetylmuramidase activities in Enterococcus faecalis peptidoglycan metabolism.
Journal of Biological Chemistry
283:
19845–19853.
|
|
|
Morlot C,
Uehara T,
Marquis KA,
Bernhardt TG and
Rudner DZ
(2010)
A highly coordinated cell wall degradation machine governs spore morphogenesis in Bacillus subtilis.
Genes & Development
24:
411–422.
|
|
|
Nelson DE and
Young KD
(2001)
Contributions of PBP 5 and DD‐carboxypeptidase penicillin binding proteins to maintenance of cell shape in E. coli.
Journal of Bacteriology
183:
3055–3064.
|
|
|
Park JT and
Uehara T
(2008)
How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan).
Microbiological and Molecular Biology Reviews
72:
211–227.
|
|
|
book
Pfeiffer JM,
Moynihan PJ,
Clarke CA,
Vandenende A and
Clarke AJ
(2012)
"Control of lytic transglycosylase activity within bacterial cell walls".
In: Reid CW,
Twine SM and
Reith AN (eds)
Bacterial Glycomics.
Norfolk, UK: Caister Academic press.
|
|
|
Popham DL and
Young KD
(2003)
Role of penicillin‐binding proteins in bacterial cell morphogenesis.
Current Opinion in Microbiology
6:
594–599.
|
|
|
Popowska M
(2004)
Analysis of the peptidoglycan hydrolases of Listeria monocytogenes: multiple enzymes with multiple functions.
Polish Journal of Microbiology
53: suppl.
29–34.
|
|
|
Priyadarshini R,
Popham DL and
Young KD
(2006)
Daughter cell separation by penicillin‐binding proteins and peptidoglycan amidases in E. coli.
Journal of Bacteriology
188:
5345–5355.
|
|
|
Reith J and
Mayer C
(2011a)
Characterization of a glucosamine/glucosaminide N‐acetyltransferase of Clostridium acetobutylicum.
Journal of Bacteriology
193:
5393–5399.
|
|
|
Reith J and
Mayer C
(2011b)
Peptidoglycan turnover and recycling in Gram‐positive bacteria.
Applied Microbiology and Biotechnology
92:
1–11.
|
|
|
Romeis T,
Vollmer W and
Höltje JV
(1993)
Characterization of three different lytic transglycosylases in E. coli.
FEMS Microbiology Letters
111:
141–146.
|
|
|
Scheurwater EM and
Burrows LL
(2011)
Maintaining network security: how macromolecular structures cross the peptidoglycan layer.
FEMS Microbiology Letters
318:
1–9.
|
|
|
Schirner K,
Marles‐Wright J,
Lewis RJ and
Errington J
(2009)
Distinct and essential morphogenic functions for wall‐ and lipo‐teichoic acids in Bacillus subtilis.
EMBO Journal
28:
830–842.
|
|
|
Shah IM and
Dworkin J
(2010)
Induction and regulation of a secreted peptidoglycan hydrolase by a membrane Ser/Thr kinase that detects muropeptides.
Molecular Microbiology
75:
1232–1243.
|
|
|
Shah IM,
Laaberki MH,
Popham DL and
Dworkin J
(2008)
A eukaryotic‐like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments.
Cell
135:
486–496.
|
|
|
Smith TJ,
Blackman SA and
Foster SJ
(2000)
Autolysins of Bacillus subtilis: multiple enzymes with multiple functions.
Microbiology
146(Pt 2):
249–262.
|
|
|
Stapleton MR,
Horsburgh MJ,
Hayhurst EJ et al.
(2007)
Characterization of IsaA and SceD, two putative lytic transglycosylases of Staphylococcus aureus.
Journal of Bacteriology
189:
7316–7325.
|
|
|
Sudiarta IP,
Fukushima T and
Sekiguchi J
(2010)
Bacillus subtilis CwlQ (previous YjbJ) is a bifunctional enzyme exhibiting muramidase and soluble‐lytic transglycosylase activities.
Biochemical and Biophysical Research Communications
398:
606–612.
|
|
|
Suvorov M,
Lee M,
Hesek D,
Boggess B and
Mobashery S
(2008)
Lytic transglycosylase MltB of E. coli and its role in recycling of peptidoglycan strands of bacterial cell wall.
Journal of American Chemical Society
130:
11878–11879.
|
|
|
Templin MF,
Ursinus A and
Höltje JV
(1999)
A defect in cell wall recycling triggers autolysis during the stationary growth phase of E. coli.
EMBO Journal
18:
4108–4117.
|
|
|
Thunnissen AM,
Rozeboom HJ,
Kalk KH and
Dijkstra BW
(1995)
Structure of the 70‐kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism.
Biochemistry
34:
12729–12737.
|
|
|
Typas A,
Banzhaf M,
Gross CA and
Vollmer W
(2012)
From the regulation of peptidoglycan synthesis to bacterial growth and morphology.
Nature Review of Microbiology
10:
123–136.
|
|
|
Uehara T and
Park JT
(2008a)
Growth of E. coli: significance of peptidoglycan degradation during elongation and septation.
Journal of Bacteriology
190:
3914–3922.
|
|
|
book
Uehara T and
Park JT
(2008b)
"Peptidoglycan recycling EcoSal‐Eschericia coli and Salmonella".
In: Cellular and Molecular Biology,
3rd edn,
Washington, DC: ASM Press, posted on October 15, 2008.
|
|
|
Uehara T,
Suefuji K,
Jaeger T,
Mayer C and
Park JT
(2006)
MurQ etherase is required by E. coli in order to metabolize anhydro‐N‐acetylmuramic acid obtained either from the environment or from its own cell wall.
Journal of Bacteriology
188:
1660–1662.
|
|
|
Vollmer W,
Joris B,
Charlier P and
Foster S
(2008)
Bacterial peptidoglycan (murein) hydrolases.
FEMS Microbiology Review
32:
259–286.
|
|
|
Weidenmeier C and
Peschel A
(2008)
Teichoic acids and releated cell‐wall glycopolymers in Gram‐positive physiology and host interactions.
Nature Microbiology Review
6:
276–287.
|