| References |
|
|
Bartholomeu DC,
Cerqueira GC,
Leao AC et al.
(2009)
Genomic organization and expression profile of the mucin‐associated surface protein (masp) family of the human pathogen Trypanosoma cruzi.
Nucleic Acids Research
37:
3407–3417.
|
|
|
Bringaud F,
Biteau N,
Melville SE et al.
(2002)
A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei.
Eukaryotic Cell
1:
137–151.
|
|
|
Campbell DA,
Thomas S and
Sturm NR
(2003)
Transcription in kinetoplastid protozoa: why be normal?
Microbes and Infection
5:
1231–1240.
|
|
|
Cano MI,
Gruber A,
Vazquez M et al.
(1995)
Molecular karyotype of clone CL Brener chosen for the Trypanosoma cruzi genome project.
Molecular and Biochemical Parasitology
71:
273–278.
|
|
|
Castro C,
Craig SP and
Castaneda M
(1981)
Genome organization and ploidy number in Trypanosoma cruzi.
Molecular and Biochemical Parasitology
4:
273–282.
|
|
|
Chiurillo MA,
Cano I,
Da Silveira JF and
Ramirez JL
(1999)
Organization of telomeric and sub‐telomeric regions of chromosomes from the protozoan parasite Trypanosoma cruzi.
Molecular and Biochemical Parasitology
100:
173–183.
|
|
|
Chiurillo MA,
Santos MR,
Franco Da Silveira J and
Ramirez JL
(2002)
An improved general approach for cloning and characterizing telomeres: the protozoan parasite Trypanosoma cruzi as model organism.
Gene
294:
197–204.
|
|
|
Cura CI,
Mejia‐Jaramillo AM,
Duffy T et al.
(2010)
Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced‐leader genes.
International Journal for Parasitology
40:
1599–1607.
|
|
|
Degrave W,
Fragoso SP,
Britto C et al.
(1988)
Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi.
Molecular and Biochemical Parasitology
27:
63–70.
|
|
|
Dvorak JA,
Hall TE,
Crane MS et al.
(1982)
Trypanosoma cruzi: flow cytometric analysis. I. Analysis of total DNA/organism by means of mithramycin‐induced fluorescence.
Journal of Protozoology
29:
430–437.
|
|
|
El‐Sayed NM,
Myler PJ,
Bartholomeu DC et al.
(2005a)
The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease.
Science
309:
409–415.
|
|
|
El‐Sayed NM,
Myler PJ,
Blandin G et al.
(2005b)
Comparative genomics of trypanosomatid parasitic protozoa.
Science
309:
404–409.
|
|
|
Franzen O,
Ochaya S,
Sherwood E et al.
(2011)
Shotgun sequencing analysis of Trypanosoma cruzi I Sylvio X10/1 and comparison with T. cruzi VI CL Brener.
PLoS Neglected Tropical Diseases
5:
e984.
|
|
|
Frasch AC
(2000)
Functional diversity in the trans‐sialidase and mucin families in Trypanosoma cruzi.
Parasitology Today
16:
282–286.
|
|
|
Freitas LM,
dos Santos SL,
Rodrigues‐Luiz GF et al.
(2011)
Genomic analyses, gene expression and antigenic profile of the trans‐sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity.
PLoS One
6:
e25914.
|
|
|
Freitas‐Junior LH,
Bottius E,
Pirrit LA et al.
(2000)
Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum.
Nature
407:
1018–1022.
|
|
|
Garcia‐Perez JL,
Gonzalez CI,
Thomas MC,
Olivares M and
Lopez MC
(2003)
Characterization of reverse transcriptase activity of the L1Tc retroelement from Trypanosoma cruzi.
Cellular and Molecular Life Sciences
60:
2692–2701.
|
|
|
Ghedin E,
Bringaud F,
Peterson J et al.
(2004)
Gene synteny and evolution of genome architecture in trypanosomatids.
Molecular and Biochemical Parasitology
134:
183–191.
|
|
|
Gibson WC and
Miles MA
(1986)
The karyotype and ploidy of Trypanosoma cruzi.
EMBO Journal
5:
1299–1305.
|
|
|
Junqueira AC,
Degrave W and
Brandao A
(2005)
Minicircle organization and diversity in Trypanosoma cruzi populations.
Trends in Parasitology
21:
270–272.
|
|
|
Kim D,
Chiurillo MA,
El‐Sayed N et al.
(2005)
Telomere and subtelomere of Trypanosoma cruzi chromosomes are enriched in (pseudo)genes of retrotransposon hot spot and trans‐sialidase‐like gene families: the origins of T. cruzi telomeres.
Gene
346:
153–161.
|
|
|
Kooy RF,
Ashall F,
Van der Ploeg M and
Overdulve JP
(1989)
On the DNA content of Trypanosoma cruzi.
Molecular and Biochemical Parasitology
36:
73–76.
|
|
|
Lanar DE,
Levy LS and
Manning JE
(1981)
Complexity and content of the DNA and RNA in Trypanosoma cruzi.
Molecular and Biochemical Parasitology
3:
327–341.
|
|
|
Lewis MD,
Llewellyn MS,
Gaunt MW et al.
(2009)
Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids.
International Journal for Parasitology
39:
1305–1317.
|
|
|
Lira CB,
Giardini MA,
Neto JL,
Conte FF and
Cano MI
(2007)
Telomere biology of trypanosomatids: beginning to answer some questions.
Trends in Parasitology
23:
357–362.
|
|
|
Martins C,
Baptista CS,
Ienne S et al.
(2008)
Genomic organization and transcription analysis of the 195‐bp satellite DNA in Trypanosoma cruzi.
Molecular and Biochemical Parasitology
160:
60–64.
|
|
|
McDaniel JP and
Dvorak JA
(1993)
Identification, isolation, and characterization of naturally occurring Trypanosoma cruzi variants.
Molecular and Biochemical Parasitology
57:
213–222.
|
|
|
Miles MA,
Llewellyn MS,
Lewis MD et al.
(2009)
The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future.
Parasitology
136:
1509–1528.
|
|
|
Minning TA,
Weatherly DB,
Flibotte S and
Tarleton RL
(2011)
Widespread, focal copy number variations (CNV) and whole chromosome aneuploidies in Trypanosoma cruzi strains revealed by array comparative genomic hybridization.
BMC Genomics
12:
139.
|
|
|
Obado SO,
Bot C,
Nilsson D,
Andersson B and
Kelly JM
(2007)
Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi.
Genome Biology
8:
R37.
|
|
|
Obado SO,
Taylor MC,
Wilkinson SR,
Bromley EV and
Kelly JM
(2005)
Functional mapping of a trypanosome centromere by chromosome fragmentation identifies a 16‐kb GC‐rich transcriptional strand‐switch domain as a major feature.
Genome Research
15:
36–43.
|
|
|
Olivares M,
Alonso C and
Lopez MC
(1997)
The open reading frame 1 of the L1Tc retrotransposon of Trypanosoma cruzi codes for a protein with apurinic‐apyrimidinic nuclease activity.
Journal of Biological Chemistry
272:
25224–25228.
|
|
|
Olivares M,
Garcia‐Perez JL,
Thomas MC,
Heras SR and
Lopez MC
(2002)
The non‐LTR (long terminal repeat) retrotransposon L1Tc from Trypanosoma cruzi codes for a protein with RNase H activity.
Journal of Biological Chemistry
277:
28025–28030.
|
|
|
Olivares M,
Lopez MC,
Garcia‐Perez JL et al.
(2003)
The endonuclease NL1Tc encoded by the LINE L1Tc from Trypanosoma cruzi protects parasites from daunorubicin DNA damage.
Biochimica et Biophysica Acta
1626:
25–32.
|
|
|
Olivares M,
Thomas MC,
Alonso C and
Lopez MC
(1999)
The L1Tc, long interspersed nucleotide element from Trypanosoma cruzi, encodes a protein with 3′‐phosphatase and 3′‐phosphodiesterase enzymatic activities.
Journal of Biological Chemistry
274:
23883–23886.
|
|
|
Pidoux AL and
Allshire RC
(2004)
Kinetochore and heterochromatin domains of the fission yeast centromere.
Chromosome Research
12:
521–534.
|
|
|
Porcile PE,
Santos MR,
Souza RT et al.
(2003)
A refined molecular karyotype for the reference strain of the Trypanosoma cruzi genome project (clone CL Brener) by assignment of chromosome markers.
Gene
308:
53–65.
|
|
|
Rassi A Jr,
Rassi A and
Marin‐Neto JA
(2010)
Chagas disease.
Lancet
375:
1388–1402.
|
|
|
Santos MR,
Lorenzi H,
Porcile P et al.
(1999)
Physical mapping of a 670‐kb region of chromosomes XVI and XVII from the human protozoan parasite Trypanosoma cruzi encompassing the genes for two immunodominant antigens.
Genome Research
9:
1268–1276.
|
|
|
Simpson L
(1987)
The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution.
Annual Review of Microbiology
41:
363–382.
|
|
|
Souza RT,
Lima FM,
Barros RM et al.
(2011)
Genome size, karyotype polymorphism and chromosomal evolution in Trypanosoma cruzi.
PLoS One
6:
e23042.
|
|
|
Vargas N,
Pedroso A and
Zingales B
(2004)
Chromosomal polymorphism, gene synteny and genome size in T. cruzi I and T. cruzi II groups.
Molecular and Biochemical Parasitology
138:
131–141.
|
|
|
Vazquez M,
Ben‐Dov C,
Lorenzi H et al.
(2000)
The short interspersed repetitive element of Trypanosoma cruzi, SIRE, is part of VIPER, an unusual retroelement related to long terminal repeat retrotransposons.
Proceedings of the National Academy of Sciences of the USA
97:
2128–2133.
|
|
|
Weatherly DB,
Boehlke C and
Tarleton RL
(2009)
Chromosome level assembly of the hybrid Trypanosoma cruzi genome.
BMC Genomics
10:
255.
|
|
|
Westenberger SJ,
Barnabe C,
Campbell DA and
Sturm NR
(2005)
Two hybridization events define the population structure of Trypanosoma cruzi.
Genetics
171:
527–543.
|
|
|
Wickstead B,
Ersfeld K and
Gull K
(2003)
Repetitive elements in genomes of parasitic protozoa.
Microbiology and Molecular Biology Reviews
67:
360–375 table of contents.
|
|
|
Zingales B,
Andrade SG,
Briones MR et al.
(2009)
A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI.
Memórias do Instituto Oswaldo Cruz
104:
1051–1054.
|
|
|
Zingales B,
Miles MA,
Campbell DA et al.
(2012)
The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications.
Infection, Genetics and Evolution
12:
240–253.
|
|
|
Zingales B,
Pereira ME,
Oliveira RP et al.
(1997)
Trypanosoma cruzi genome project: biological characteristics and molecular typing of clone CL Brener.
Acta Tropica
68(2):
159–173.
|
| Further Reading |
|
|
Andersson B
(2011)
The Trypanosoma cruzi genome; conserved core genes and extremely variable surface molecule families.
Research in Microbiology
162:
619–625.
|