Molecular Genetics of Frontotemporal Dementia

Abstract

Frontotemporal dementia (FTD) is a nonAlzheimer's form of dementia. Onset age lies in the mid‐to‐late 50s. FTD affects the frontal and/or the temporal lobes and is clinically divided into two main categories: behavioural variant (bvFTD) and language variant. FTD is characterised by heterogeneous pathology defined by pathogenic protein inclusions: microtubule‐associated protein tau (MAPT), ubiquitin/transactive responses (TAR) deoxyribonucleic acid (DNA)‐binding protein 43 (TDP)‐43, fused in sarcoma (FUS) and p62. MAPT, progranulin (PGRN) and, recently, C9orf72 genes represent the three main genetic markers associated with FTD. In addition, genetic variability in TDP‐43, charged multivesicular body protein 2B (CHMP2B), valosin‐containing protein (VCP), FUS and TMEM106B genes contribute to ⩽5% of cases. Research tools such as genome‐wide association studies and exome and genome sequencing hold promise to further uncover the genetic underpinnings of this complex disorder.

Key Concepts:

  • Frontotemporal dementia (FTD) is a nonAlzheimer's form of dementia; it affects behaviour, cognition and language, while memory (in the early phases).

  • The anatomical areas of the brain that are affected by atrophy are the frontal and the temporal lobes; based on this fact FTD is considered part of the spectrum called frontotemporal lobar degeneration (FTLD).

  • FTD is a complex disease with insidious onset; no therapeutic measures are available as yet.

  • Behavioural variant FTD (bvFTD) is the most common syndrome of FTD, which is associated with gradual deterioration of behaviour and cognition.

  • Different protein inclusions in the brain are used to classify the pathology associated with FTLD.

  • TDP‐43 and tau pathology represent the most common (∼90%) types of pathological signatures associated with FTLD.

  • MAPT, PGRN and C9orf72 are the major (∼95%) genetic markers associated with familial FTD.

  • TMEM106B regulates granulin protein levels.

  • Genome‐wide association studies (GWASs) and next‐generation sequencing technologies whole exome sequencing (WES) and whole genome sequencing (WGS) hold promise for dissecting the genetic aetiology of complex diseases; in molecular genetics these technologies help in screening a wide range of genetic variabilities from SNPs to CNVs in large cohorts across different populations.

Keywords: frontotemporal dementia; frontotemporal lobar degeneration; bvFTD; PPA; MAPT; PGRN; C9orf72; TMEM106B; tau pathology; TDP‐43 pathology

Figure 1.

The main clinical, pathological and genetic features associated with FTD are summarised. In each section, the most common features are located at the top in black boxes. As the features become less stable, common or frequent the boxes increasingly brighten up into lighter shades of grey. In the Genetics section TMEM106B is shown as a possible modifier of PGRN. Abbreviations: bvFTD, behavioural variant FTD; C9orf72, chromosome 9 open reading frame 72; CHMP2B, charged multivesicular body protein 2B; FUS, fused in sarcoma; FTD, frontotemporal dementia; FTLD‐FUS, frontotemporal lobar degeneration with FUS pathology; FTLD‐tau, frontotemporal lobar degeneration with tau pathology; FTLD‐TDP, frontotemporal lobar degeneration with ubiquitin/TDP‐43 pathology (that is subdivided in Types A, B, C, D – see Table ); FTLD‐UPS, frontotemporal lobar degeneration with ubiquitin/p62 pathology (which are elements of the Ubiquitin Proteasome System); LPA, logopenic progressive aphasia; MAPT, microtubule associated protein tau; PGRN, progranulin; PNFA, progressive nonfluent aphasia; PPA, primary progressive aphasia; SD, semantic dementia; TDP‐43, TAR DNA binding protein 43; TMEM106B, transmembran protein 106 B; VCP, valosin‐containing protein.

Figure 2.

The input from different fields of expertise through different forms of investigation holds promise to provide a more comprehensive perspective on the different components that contribute to the disease.

close

References

Ahmad ST, Sweeney ST, Lee JA, Sweeney NT and Gao FB (2009) Genetic screen identifies serpin5 as a regulator of the toll pathway and CHMP2B toxicity associated with frontotemporal dementia. Proceedings of the National Academy of Sciences USA (Online) 106(29): 12168–12173.

Akimoto C, Forsgren L, Linder J et al. (2013) No GGGGCC‐hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden. Amyotrophic Lateral Sclerosis Frontotemporal Degeneration 14(1): 26–29.

Al Sarraj S, King A, Troakes C et al. (2011) p62 positive, TDP‐43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72‐linked FTLD and MND/ALS. Acta Neuropathologica 122(6): 691–702.

Arighi A, Fumagalli GG, Jacini F et al. (2012) Early onset behavioral variant frontotemporal dementia due to the C9ORF72 hexanucleotide repeat expansion: psychiatric clinical presentations. Journal of Alzheimers Disease 31(2): 447–452.

Baker M, Mackenzie IR, Pickering‐Brown SM et al. (2006) Mutations in progranulin cause tau‐negative frontotemporal dementia linked to chromosome 17. Nature 442(7105): 916–919.

Balch WE, Morimoto RI, Dillin A and Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319(5865): 916–919.

Barandiaran M, Estanga A, Moreno F et al. (2012) Neuropsychological features of asymptomatic c.709‐1G>A progranulin mutation carriers. Journal of the International Neuropsychological Society 18(6): 1086–1090.

Bernardi L, Frangipane F, Smirne N et al. (2012) Epidemiology and genetics of frontotemporal dementia: a door‐to‐door survey in southern Italy. Neurobiology of Aging 33(12): e1–e2948.

Bienek KF, Murray ME, Rutherford NJ et al. (2012) Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion. Acta Neuropathologica 125(2): 289–302.

Boeve BF, Boylan KB, Graff‐Radford NR et al. (2012) Characterization of frontotemporal dementia and/or amyotrophic lateral sclerosis associated with the GGGGCC repeat expansion in C9ORF72. Brain 135(Pt 3): 765–783.

Borghero G, Floris G, Cannas A et al. (2011) A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiology of Aging 32(12): 2327 e1–e5.

Borroni B, Archetti S, Del Bo R et al. (2010) TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Research 13(5): 509–517.

Borroni B, Bonvicini C, Alberici A et al. (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Human Mutation 30(11): E974–E983.

Brady OA, Zheng Y, Murphy K, Huang M and Hu F (2013) The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Human Molecular Genetics 22(4): 685–695.

Brettschneider J, Van Deerlin VM, Robinson JL et al. (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9orf72 hexanucleotide expansion. Acta Neuropathologica 123(6): 825–839.

Brown J, Ashworth A, Gydesen S et al. (1995) Familial non‐specific dementia maps to chromosome 3. Human Molecular Genetics 4(9): 1625–1628.

Budini M, Romano V, Avendaño‐Vázquez SE et al. (2012) Role of selected mutations in the Q/N rich region of TDP‐43 in EGFP‐12xQ/N‐induced aggregate formation. Brain Research 1462: 139–150.

Caffrey TM and Wade‐Martins R (2007) Functional MAPT haplotypes: Briging the gap between genotype and neuropathology. Neurobiology of Disease 27(1): 1–10.

Cannon A, Baker M, Boeve B et al. (2006) CHMP2B mutations are not a common cause of frontotemporal lobar degeneration. Neuroscience Letters 398(1‐2): 83–84.

Carrasquillo MM, Nicholson AM, Finch N et al. (2010) Genome‐wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. American Journal of Human Genetics 87(6): 890–897.

Caso F, Villa C, Fenoglio C et al. (2012) The progranulin (GRN) Cys157LysfsX97 mutation is associated with nonfluent variant of primary progressive aphasia clinical phenotype. Journal of Alzheimers Disease 28(4): 759–763.

Chen‐Plotkin AS, Lee VM and Trojanowski JQ (2010) TAR DNA‐binding protein 43 in neurodegenerative disease. Nature Reviews Neurology 6(4): 211–220.

Chen‐Plotkin AS, Unger TL, Gallagher MD et al. (2012) TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA‐132/212 cluster and affects progranulin pathways. Journal of Neuroscience 32(33): 11213–11227.

Chio' A, Restagno G, Brunetti M et al. (2012) ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations. Journal of Neurology, Neurosurgery and Psychiatry 83(7): 730–733.

Coppola G, Chinnathambi S, Lee JJ et al. (2012) Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD‐spectrum and Alzheimer's diseases. Human Molecular Genetics 21(15): 3500–3512.

Cairns NJ, Neumann M, Bigio EH et al. (2007) TDP‐ 43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. American Journal of Pathology 171(1): 227–240.

Cruchaga C, Graff C, Chiang HH et al. (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Archives of Neurology 68(5): 581–586.

Cruts M, Gijselinck I, van der Zee J et al. (2006) Null mutations in progranulin cause ubiquitin‐positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105): 920–924.

Daniel R, He Z, Carmichael KP, Halper J and Bateman A (2000) Cellular localization of gene expression for progranulin. Journal of Histochemistry and Cytochemistry 48(7): 999–1009.

DeJesus‐Hernandez M, Mackenzie IR, Boeve BF et al. (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72(2): 245–256.

Deramecourt V, Lebert F, Maurage CA et al. (2012) Clinical, neuropathological and biochemical characterization of the novel Tau mutation P332S. Journal of Alzheimers Disease 31(4): 741–749.

Dobson‐Stone C, Hallupp M, Bartley L et al. (2012) C9ORF72 repeat expansion in clinical and neuropathologic frontotemporal dementia cohorts. Neurology 79(10): 995–1001.

Dols‐Icardo O, Suárez‐Calvet M, Hernández I et al. (2012) Expansion mutation in C9ORF72 does not influence plasma progranulin levels in frontotemporal dementia. Neurobiology of Aging 33(8): 1851. e17–e19.

van Es MA, Veldink JH, Saris CG et al. (2009) Genome‐wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics 41(10): 1083–1087.

Ferrari R, Kapogiannis D, Huey ED et al. (2010) Novel missense mutation in charged multivesicular body protein 2b in a patient with frontotemporal dementia. Alzheimer Disease and Associated Disorders 24(4): 397–401.

Ferrari R, Mok K, Moreno JH et al. (2012) Screening for C9orf72 repeat expansion in FTLD. Neurobiology of Aging 33(8): 1850. e1–e11.

Finch N, Carrasquillo MM, Baker M et al. (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76(5): 467–474.

Floris G, Borghero G, Cannas A et al. (2012) Frontotemporal dementia with psychosis, parkinsonism, visuo‐spatial dysfunction, upper motor neuron involvement associated to expansion of C9ORF72: a peculiar phenotype? Journal of Neurology 259(8): 1749–1751.

Forman MS, Mackenzie IR, Cairns NJ et al. (2006) Novel ubiquitin neuropathology in frontotemporal dementia with valosin‐containing protein gene mutations. Journal of Neuropathology and Experimental Neurology 65(6): 571–581.

Froelich‐Fabre S and Bhat RV (2004) Mechanisms of tauopathies. Drug Discovery Today: Disease Mechanisms 1(4): 391–398.

Gallone S, Giordana MT, Scarpini E et al. (2009) Absence of TARDBP gene mutations in an italian series of patients with frontotemporal lobar degeneration. Dementia and Geriatric Cognitive Disorders 28(3): 239–243.

Geser F, Martinez‐Lage M, Kwong LK, Lee VM and Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP‐43 diseases. Journal of Neurology 256(8): 1205–1214.

Ghanim M, Guillot‐Noel L, Pasquier F et al. (2010) CHMP2B mutations are rare in French families with frontotemporal lobar degeneration. Journal of Neurology 257(12): 2032–2036.

Ghazi‐Noori S, Froud KE, Mizielinska S et al. (2012) Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain 135(Pt 3): 819–832.

Gijselinck I, Sleegers K, Engelborghs S et al. (2009) Neuronal inclusion protein TDP‐43 has no primary genetic role in FTD and ALS. Neurobiology of Aging 30(8): 1329–1331.

Gijselinck I, Van Broeckhoven C and Cruts M (2008) Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Human Mutation 29(12): 1373–1386.

Gijselinck I, Van Langenhove T, van der Zee J et al. (2012) A C9orf72 promoter repeat expansion in a Flanders‐Belgian cohort with disorders of the frontotemporal lobar degeneration‐amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurology 11(1): 54–65.

Gitcho MA, Bigio EH, Mishra M et al. (2009) TARDBP 3′‐UTR variant in autopsy‐confirmed frontotemporal lobar degeneration with TDP‐43 proteinopathy. Acta Neuropathologica 118(5): 633–645.

Goedert M and Jakes R (2005) Mutations causing neurodegenerative tauopathies. Biochimica et Biophysica Acta 1739(2–3): 240–250.

Goedert M, Spillantini MG, Jakes R, Rutherford D and Crowther RA (1989) Multiple isoforms of human microtubule‐associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3(4): 519–526.

Gorno‐Tempini ML, Hillis AE, Weintraub S et al. (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11): 1006–1014.

Gregor A, Krumbiegel M, Kraus C, Reis A and Zweier C (2012) De novo triplication of the MAPT gene from the recurrent 17q21.31 microdeletion region in a patient with moderate intellectual disability and various minor anomalies. American Journal of Medical Genetics 158A(7): 1765–1770.

Halawani D, LeBlanc AC, Rouiller I et al. (2009) Hereditary inclusion body myopathy‐linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Molecular and Cellular Biology 29(16): 4484–4494.

Halliday G, Bigio EH, Cairns NJ et al. (2012) Mechanisms of disease in Frontotemporal lobar degeneration: gain of function versus loss of function effects. Acta Neuropathologica 124(3): 373–382.

Han JH, Ryu HH, Jun MH, Jang DJ and Lee JA (2012) The functional analysis of the CHMP2B missense mutation associated with neurodegenerative diseases in the endo‐lysosomal pathway. Biochemical and Biophysical Research Communications 421(3): 544–549.

Harms MB, Neumann D, Benitez BA et al. (2012) Parkinson disease is not associated with C9orf72 repeat expansions. Neurobiology of Aging 34(5): 1519. e1–e2.

He Z and Bateman A (2003) Progranulin (granulin‐epithelin precursor, PC‐cell‐derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. Journal of Molecular Medicine 81(10): 600–612.

Hsiung GY, DeJesus‐Hernandez M, Feldman HH et al. (2012) Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135(Pt 3): 709–722.

Huey ED, Ferrari R, Moreno JH et al. (2012) FUS and TDP‐43 genetic variability in FTD and CBS. Neurobiology of Aging 33(5): 1016. e9–e17.

Hutton M, Lendon CL, Rizzu P et al. (1998) Association of missense and 5′‐splice‐site mutations in tau with the inherited dementia FTDP‐17. Nature 393(6686): 702–705.

Jho YS, Zhulina EB, Kim MW and Pincus PA (2010) Monte carlo simulations of tau proteins: effect of phosphorylation. Biophysical Journal 99(8): 2387–2397.

Johnson JO, Mandrioli J, Benatar M et al. (2010) Exome sequencing reveals VCP mutations as cause of familial ALS. Neuron 68(5): 857–864.

Josephs KA (2008) Frontotemporal dementia and related disorders: deciphering the enigma. Annals of Neurology 64(1): 4–14.

Josephs KA, Whitwell JL, Vemuri P et al. (2008) The anatomic correlate of prosopagnosia in semantic dementia. Neurology 71(20): 1628–1633.

Ju JS and Weihl CC (2010) Inclusion body myopathy, Paget's disease of the bone and fronto‐temporal dementia: a disorder of autophagy. Human Molecular Genetics 19(R1): R38–R45.

Kabashi E, Lin L, Tradewell ML et al. (2010) Gain and loss of function of ALS‐related mutations of TARDBP (TDP‐43) cause motor deficits in vivo. Human Molecular Genetics 19(4): 671–683.

Kaivorinne AL, Moilanen V, Kervinen M et al. (2012) Novel TARDBP sequence variant and C9orf72 repeat expansion in a family with FTD. Alzheimer Disease and Associated Disorders (Epub ahead of print).

Kim EJ, Park YE, Kim DS et al. (2011) Inclusion body myopathy with Paget disease of bone and FTD linked to VCP p.Arg155Cys in a Korean family. Archives of Neurology 68(6): 787–796.

King A, Al‐Sarraj S, Troakes C et al. (2012) Mixed tau, TDP‐43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant. Acta Neuropathologica 125(2): 303–310.

Kitsiou‐Tzelia S, Frysira H, Giannikou K et al. (2012) Microdeletion and microduplication 17.21.31 plus an additional CNV, in patients with intellectual disability, identified by array‐CGH. Gene 492(1): 319–324.

Kohli MA, John‐Williams K, Rajbhandary R et al. (2013) Repeat expansion in the C9orf72 gene contribute to Alzheimer's disease in Caucasians. Neurobiology of Aging 34(5): 1519. e5–e12.

Koppers M, Groen EJ, van Vught PW et al. (2013) Screening for rare variants in the coding region of ALS associated genes at 9p21.2. Neurobiology of Aging 34(5): 1518. e5–e7.

Kovacs GG, Murrell JR, Horvath S et al. (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Movement Disorders 24(12): 1843–1847.

Kurz A and Perneczky R (2009) Neurobiology of cognitive disorders. Current Opinion in Psychiatry 22(6): 546–551.

Laaksovirta H, Peuralinna T, Schymick JC et al. (2010) Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome‐wide association study. Lancet Neurology 9(10): 978–985.

Lang CM, Fellerer K, Schwenk BM et al. (2012) Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. Journal of Biological Chemistry 287(23): 19355–19365.

Lee JA, Beigneux A, Ahmad ST, Young SG and Gao FB (2007) ESCRT‐III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology 17(18): 1561–1567.

Lindquist S, Duno M, Batbayli M et al. (2013) Corticobasal and ataxia syndromes widen the spectrum of C9orf72 hexanucleotide expansion disease. Clinical Genetics 83(3): 279–283.

Liscic RM, Grinberg LT, Zidar J, Gitcho MA and Cairns NJ (2008) ALS and FTLD: Two faces of TDP‐43 proteinopathy. European Journal of Neurology 15(8): 772–780.

Lladó A, Rodríguez‐Santiago B, Antonell A et al. (2007) MAPT gene duplications are not a cause of frontotemporal lobar degeneration. Neuroscience Letter 424(1): 61–65.

Luigetti M, Quaranta D, Conte A et al. (2013) FTD, parkinsonism and lower motor neuron involvement in a patient with C9ORF72 expansion. Amyotrophic Lateral Sclerosis Frontotemporal Degeneration 14(1): 66–69.

Mackenzie IR and Rademakers R (2007) The molecular genetics and neuropathology of frontotemporal lobar degeneration: recent developments. Neurogenetics 8(4): 237–248.

Mackenzie IR, Neumann M, Baborie A et al. (2011a) A harmonized classification system for FTLD‐TDP pathology. Acta Neuropathologica 122(1): 111–113.

Mackenzie IR, Munoz DG, Kusaka H et al. (2011b) Distinct pathological subtypes of FTLD‐FUS. Acta Neuropathologica 121(2): 207–218.

Mackenzie IR, Neumann M, Bigio EH et al. (2009) Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathologica 117(1): 15–18.

Mahoney CJ, Beck J, Rohrer JD et al. (2012a) Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features. Brain 135(Pt 3): 736–750.

Mahoney CJ, Downey LE, Ridgway GR et al. (2012b) Longitudinal neuroimaging and neuropsychological profiles of FTD with C9orf72 expansions. Alzhemeir's Research and Therapy 4(5): 41.

Majounie E, Abramzon Y, Renton AE et al. (2012a) Repeat expansion in C9orf72 in Alzheimer's disease. New England Journal of Medicine 366(3): 283–284.

Majounie E, Abramzon Y, Renton AE et al. (2012b) Large C9orf72 repeat expansions are not a common cause of Parkinson's disease. Neurobiology of Aging 33(10): 2527 e1–e2.

Majounie E, Renton AE, Mok K et al. (2012c) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross‐sectional study. Lancet Neurology 11(4): 323–330.

Malkani R, D'Souza I, Gwinn‐Hardy K et al. (2006) A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiology of Disease 22(2): 401–403.

Mesulam MM (2001) Primary progressive aphasia. Annals of Neurology 49(4): 425–432.

Momeni P, Rogaeva E, Van Deerlin V et al. (2006b) Genetic variability in CHMP2B and frontotemporal dementia. Neurodegenerative Diseases 3(3): 129–133.

Momeni P, Schymick J, Jain S et al. (2006a) Analysis of IFT74 as a candidate gene for chromosome 9p‐linked ALS‐FTD. BMC Neurology 6: 44.

Mukherjee O, Wang J, Gitcho M et al. (2008) Molecular characterization of novel progranulin (GRN) mutations in frontotemporal dementia. Human Mutation 29(4): 512–521.

Murray ME, DeJesus‐Hernandez M, Rutherford NJ et al. (2011) Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathologica 122(6): 673–690.

Neary D, Snowden JS, Gustafson L et al. (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6): 1546–1554.

Nielsen TT, Mizielinska S, Hasholt L et al. (2012) Reversal of pathology in CHMP2B‐mediated frontotemporal dementia patient cells using RNA interference. Journal of Gene Medicine 14(8): 521–529.

Niblock M and Gallo JM (2012) Tau alternative splicing in familial and sporadic tauopathies. Biochemical Society Transactions 40(4): 677–680.

O'Dowd S, Curtin D, Waite AJ et al. (2012) C9ORF72 expansion in amyotrophic lateral sclerosis/frontotemporal dementia also causes parkinsonism. Movement Disorders 27(8): 1072–1074.

Poksay KS, Madden DT, Peter AK et al. (2011) Valosin‐containing protein gene mutations: cellular phenotypes relevant to neurodegeneration. Journal of Molecular Neuroscience 44(2): 91–102.

Rademakers R, Cruts M and van Broeckhoven C (2004) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutation 24(4): 277–295.

Rascovsky K, Hodges JR, Knopman D et al. (2011) Sensitivity of revised criteria for behavioural variant of frontotemporal dementia. Brain 134(Pt 9): 2456–2477.

Renton AE, Majounie E, Waite A et al. (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72(2): 257–268.

Rizzu P, van Mil SE, Anar B et al. (2006) CHMP2B mutations are not a cause of dementia in Dutch patients with familial and sporadic frontotemporal dementia. American Journal of Medical Genetics B Neuropsychiatry Genetics 141B(8): 944–946.

Rohrer JD and Warren JD (2011) Phenotypic signatures of genetic frontotemporal dementia. Current Opinion in Neurology 24(6): 542–549.

Rohrer JD, Ridgway GR, Modat M et al. (2010) Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. Neuroimage 53(3): 1070–1076.

Rollinson S, Halliwell N, Young K et al. (2012) Analysis of C9orf72 in Alzheimer's disease. Neurobiology of Aging 33(8): 1846. e5–e6.

Rollinson S, Snowden JS, Neary D et al. (2007) TDP‐43 gene analysis in frontotemporal lobar degeneration. Neuroscience Letter 419(1): 1–4.

Rosen HJ, Allison SC, Ogar JM et al. (2006) Behavioral features in semantic dementia vs other forms of progressive aphasias. Neurology 67(10): 1752–1756.

Rossi G, Bastone A, Piccoli E et al. (2012) New mutations in MAPT gene causing FTLD: biochemical and structural characterization. Neurobiology of Aging 33(4): 834. e1–e6.

Rovelet‐Lecrux A and Campion D (2012) Copy number variations involving the microtubule‐associated protein Tau in human diseases. Biochemical Society Transaction 40(4): 672–676.

Rovelet‐Lecrux A, Deramecourt V, Legallic S et al. (2008) Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiology of Disease 31(1): 41–45.

Rovelet‐Lecrux A, Hannequin D, Guillin O et al. (2010) Frontotemporal dementia phenotype associated with MAPT gene duplication. Journal of Alzheimers Disease 21(3): 897–902.

Rovelet‐Lecrux A, Lecourtois M, Thomas‐Anterion C et al. (2009) Partial deletion of the MAPT gene: a novel mechanism of FTDP‐17. Human Mutation 30(4): E591–E602.

Rutherford NJ, Carrasquillo MM, Li M et al. (2012) TMEM106B risk variant is implicated in the pathologic presentation of Alzheimer disease. Neurology 79(7): 717–718.

Schumacher A, Friedrich P, Diehl‐Schmid J et al. (2009) No association of TDP‐43 with sporadic frontotemporal dementia. Neurobiology of Aging 30(1): 157–159.

Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC and van Swieten JC (2010) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. Journal of Neurology, Neurosurgery and Psychiatry 82(5): 476–486.

Shankaran SS, Capell A, Hruscha AT et al. (2008) Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin‐immunoreactive inclusions reduce progranulin production and secretion. Journal of Biological Chemistry 283(3): 1744–1753.

Shatunov A, Mok K, Newhouse S et al. (2010) Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome‐wide association study. Lancet Neurology 9(10): 986–994.

Shaw‐Smith C, Pittman AM, Willatt L et al. (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics 38(9): 1032–1037.

Sieben A, Van Langenhove T, Engelborgs S et al. (2012) The genetics and neuropathology of frontotemporal dementia. Acta Neuropathologica 124: 353–372.

Simon‐Sanchez J, Dopper EG, Cohn‐Hokke PE et al. (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain 135(Pt 3): 723–735.

Skibinski G, Parkinson NJ, Brown JM et al. (2005) Mutations in the endosomal ESCRTIII‐complex subunit CHMP2B in frontotemporal dementia. Nature Genetics 37(8): 806–808.

Skoglund L, Ingvast S, Matsui T et al. (2009) No evidence of PGRN or MAPT gene dosage alterations in a collection of patients with frontotemporal lobar degeneration. Dementia and Geriatric Cognitive Disorders 28(5): 471–475.

Smith BN, Newhouse S, Shatunov A et al. (2013) The C9ORF72 expansion mutation is a common cause of ALS+/‐FTD in Europe and has a single founder. European Journal of Human Genetics 21(1): 102–108.

Snowden JS, Rollinson S, Lafon C et al. (2012a) Psychosis, C9orf72 and dementia with Lewy body. Journal of Neurology, Neurosurgery and Psychiatry 83(10): 1031–1032.

Snowden JS, Rollinson S, Thompson JC et al. (2012b) Distinct clinical and pathological characteristics of frontotemporal dementia associated with C9ORF72 mutations. Brain 135(Pt 3): 693–708.

Sugita S and Sudhof TC (2000) Specificity of Ca2+ dependent protein interactions mediated by the C2A domains of synaptotagmins. Biochemistry 39(11): 2940–2949.

van Swieten J and Spillantini MG (2007) Hereditary frontotemporal dementia caused by TAU gene mutations. Brain Pathology 17(1): 63–73.

van Swieten JC and Heutink P (2008) Mutations in progranulin (GRN) within the spectrum of clinical and pathological phenotypes of frontotemporal dementia. Lancet Neurology 7(10): 965–974.

Taipa R, Tuna A, Damásio J et al. (2012) Clinical, neuropathological, and genetic characteristics of the novel IVS9+1delG GRN mutation in a patient with frontotemporal dementia. Journal of Alzheimers Disease 30(1): 83–90.

Urwin H, Authier A, Nielsen JE et al. (2010) Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Human Molecular Genetics 19(11): 2228–2238.

Urwin H, Ghazi‐Noori S, Collinge J and Isaacs A (2009) The role of CHMP2B in frontotemporal dementia. Biochemical Society Transactions 37(Pt 1): 208–212.

Van Deerlin VM, Sleiman PM, Martinez‐Lage M et al. (2010) Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP‐43 inclusions. Nature Genetics 42(3): 234–239.

Varela MC, Krepischi‐Santos AC, Paz JA et al. (2006) A 17q21.31 microdeletion encompassing the MAPT gene in a mentally impaired patient. Cytogenetic and Genome Research 114(1): 89–92.

Vass R, Ashbridge E, Geser F et al. (2011) Risk genotypes at TMEM106B are associated with cognitive impairment in amyotrophic lateral sclerosis. Acta Neuropathologica 121(3): 373–380.

Wallon D, Rovelet‐Lecrux A, Deramecourt V et al. (2012) Definite behavioral variant of frontotemporal dementia with C9ORF72 expansions despite positive Alzheimer's disease cerebrospinal fluid biomarkers. Journal of Alzheimers Disease 32(1): 19–22.

Wang Q, Song C and Li CC (2004) Molecular perspectives on p97‐VCP: progress in understanding its structure and diverse biological functions. Journal of Structural Biology 146(1–2): 44–57.

Watts GD, Wymer J, Kovach MJ et al. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin‐containing protein. Nature Genetics 36(4): 377–381.

Weihl CC, Dalal S, Pestronk A and Hanson PI (2006) Inclusion body myopathy‐associated mutations in p97/VCP impair endoplasmic reticulum‐associated degradation. Human Molecular Genetics 15(2): 189–199.

Weihl CC, Pestronk A and Kimonis VE (2009) Valosin‐containing protein disease: inclusion body myopathy with Paget's disease of the bone and fronto‐temporal dementia. Neuromuscular Disorders 19(5): 308–315.

Xi Z, Zinman L, Grinberg Y et al. (2012) Investigation of C9orf72 in 4 neurodegenerative disorders. Archives of Neurology 69(12): 1583–1590.

Yang C, Tan W, Whittle C et al. (2010) The C‐terminal TDP‐43 fragments have a high aggregation propensity and harm neurons by a dominant‐negative mechanism. PLoS One 5(12): e15878.

Yeh TH, Lai SC, Weng YH et al. (2013) Screening for C9orf72 repeat expansions in parkinsonian syndromes. Neurobiology of Aging 34(4): 1311. e3–e4.

van der Zee J and Van Broeckhoven C (2011) TMEM106B a novel risk factor for frontotemporal lobar degeneration. Journal of Molecular Neuroscience 45(3): 516–521.

van der Zee J, Gijselinck I, Dillen L et al. (2012) A Pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability abd intermediate repeats. Human Mutation 34(2): 363–373.

van der Zee J, Le Ber I, Maurer‐Stroh S et al. (2007) Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Human Mutation 28(4): 416.

van der Zee J, Urwin H, Engelborghs S et al. (2008) CHMP2B C‐truncating mutations in frontotemporal lobar degeneration are associated with an aberrant endosomal phenotype in vitro. Human Molecular Genetics 17(2): 313–322.

Further Reading

Budini M, Baralle FE and Buratti E (2011) Regulation of gene expression by TDP‐43 and FUS/TLS in frontotemporal lobar degeneration. Current Alzheimer Research 8(3): 237–245. A review on how TDP‐43 and FUS might exert their pathogenic effects in FTLD.

Felten DL and Jozefowicz R (2003) Netter's atlas of Human Neuroscience (1e Netter Basic Science). For a better understanding of the brain compartments, structures and functions. Teterboro, New Jersey: Icon Learning Systems.

Frontotemporal dementia #600274. http://omim.org/entry/600274. OMIM (Online Mendelian Inheritance in Men).

Goedert M (2005) Tau gene mutations and their effects. Movement Disorders 20(Suppl. 12): S45–S52. A more extensive review on tau mutations and their effects.

Kipps CM, Knibb JA, Patterson K and Hodges JR (2008) Neuropsychology of frontotemporal dementia. Handbook of Clinical Neurology 88: 527–548. An insight on neuropsychological profiles in FTD.

Morris M, Maeda S, Vossel K and Mucke L (2011) The many faces of tau. Neuron 70(3): 410–426. A more detailed and comprehensive analysis of tau protein and its functions.

Singleton A and Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Human Molecular Genetics 20(R2): R158–R162 A review addressing how the concept of genetic variability and haplotypes can underlie different phenotypic signatures.

Sorbi S, Hort J, Erkijuntti T et al. (2012) EFNS‐ENS Guidelines on the diagnosis and management of disorders associated with dementia. European Journal of Neurology 19(9): 1159–1179 Guidelines for diagnosis and management of dementias.

Sun L and Eriksen JL (2011) Recent insights into the involvement of progranulin in frontotemporal dementia. Current Neuropharmacology 9(4): 632–642. A review on PGRN and insights on its possible pathogenic effects in FTLD.

Weihl CC (2011) Valosin containing protein associated fronto‐temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis. Current Alzheimer Research 8(3): 252–260. A deep analysis of the association between VCP and FTD.

Web Links

http://www.ftd‐picks.org/

http://www.molgen.ua.ac.be/FTDMutations

http://www.ncbi.nlm.nih.gov/gene/4137

http://www.ncbi.nlm.nih.gov/protein/?term=MAPT

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Ferrari, Raffaele, Thumma, Avinash, and Momeni, Parastoo(May 2013) Molecular Genetics of Frontotemporal Dementia. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0024457]