JAK/STAT Signalling and Haematological Malignancies

Abstract

A major focus of investigation and drug screening efforts started with the discovery of JAK2V617F as a major driver of the BCR‐ABL‐negative myeloproliferative neoplasms (MPNs). An acquired somatic mutation, JAK2V617F, drives 65% of MPNs. Further studies established that these diseases almost always exhibit mutations leading to persistent JAK2‐STAT5 activation. Sequencing of the four mammalian JAKs (Janus kinases) (JAK1, JAK2, JAK3 and TYK2) and of the seven STATs (signal transducers and activators of transcriptions) in a variety of cancers identified the pathologic activation of these JAKs and STATs, by mutations in the genes themselves or in upstream or downstream regulators as significant contributors to several haematological and solid malignancies. The development of JAK2, JAK1, JAK3 and TYK2 kinase inhibitors is unfolding with JAK2, JAK1 and JAK3 inhibitors being approved in certain conditions. Altogether, the JAK/STAT pathway became a new gold mine for discovery and therapy in haematological cancers.

Key Concepts

  • The JAK/STAT pathway has a central role in cytokine signalling in normal haematopoiesis.
  • The JAK/STAT pathway is frequently pathologically activated by several mechanisms in many types of haematological malignancies.
  • The JAK/STAT pathway can be targeted by small molecules.
  • The JAK/STAT pathway can be pathologically activated by down‐modulation of negative regulators such as phosphatases.
  • Constitutive STAT activation in blood cancers can be the result of several activated kinases, not only JAKs.
  • JAK2 activation is the main mechanismresponsible of the poorprognosis of mostpediatric B‐cell acute lymphoblasticleukemia.

Keywords: JAK/STAT; signalling; leukaemia; lymphoma; myeloproliferative neoplasms; myelodysplastic syndromes; JAK inhibitors; STAT inhibitors

Figure 1. The cytokine receptor superfamily. Cytokine receptor family consists of type I and type II subfamilies, based on homologies in the sequences of the extracellular domains. Each subfamily is divided on classes based on the homo‐ or heterodimerisation mechanism of activation and on the types of chains assembled. The precise JAKs among the four JAKs (JAK1, JAK2, TYK2, JAK3) utilised by each class of receptors are indicated.
Figure 2. Oncogenic somatic mutations in JAK2 and MPL/TpoR in myeloproliferative neoplasms. (a) Upper. The pseudokinase domain V617F mutation activates the kinase domain. Rare activating mutations occur in the SH2‐JH2 linker in Polycythemia Vera (exon 12 mutations). Bottom. A model of JAK2 showing the N‐terminal FERM domain binding to a cytokine receptor cytosolic domain. (b) Activating mutations in the cytosolic juxtamembrane domain of TpoR.
Figure 3. Domain structure of STAT proteins and STAT3 oncogenic mutants.
Figure 4. Domain structure of calreticulin and mutants in exon 9 that are prevalent in myeloproliferative neoplasms. Upper. Structure of calreticulin and function of each domain. Bottom. Exon 9 deletions and insertions lead to an identical frameshift that changes a negatively charged sequence and the KDEL ER retention motif to a positively charged sequence.
close

References

Arranz L, Sanchez‐Aguilera A, Martin‐Perez D, et al. (2014) Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512 (7512): 78–81.

Bain BJ and Ahmad S (2014) Should myeloid and lymphoid neoplasms with PCM1‐JAK2 and other rearrangements of JAK2 be recognized as specific entities? British Journal of Haematology 166 (6): 809–817.

Bandaranayake RM, Ungureanu D, Shan Y, et al. (2012) Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nature Structural and Molecular Biology 19 (8): 754–759.

Bartalucci N, Tozzi L, Bogani C, et al. (2013) Co‐targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. Journal of Cellular and Molecular Medicine 17 (11): 1385–1396.

Baumgartner C, Cerny‐Reiterer S, Sonneck K, et al. (2009) Expression of activated STAT5 in neoplastic mast cells in systemic mastocytosis: subcellular distribution and role of the transforming oncoprotein KIT D816V. American Journal of Pathology 175 (6): 2416–2429.

Baxter EJ, Scott LM, Campbell PJ, et al. (2005) Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365 (9464): 1054–1061.

Beekman R and Touw IP (2010) G‐CSF and its receptor in myeloid malignancy. Blood 115 (25): 5131–5136.

Beekman R, Valkhof M, van Strien P, et al. (2013) Prevalence of a new auto‐activating colony stimulating factor 3 receptor mutation (CSF3R‐T595I) in acute myeloid leukemia and severe congenital neutropenia. Haematologica 98 (5): e62–63.

Beer PA, Campbell PJ, Scott LM, et al. (2008) MPL mutations in myeloproliferative disorders: analysis of the PT‐1 cohort. Blood 112 (1): 141–149.

Beer PA, Delhommeau F, LeCouedic JP, et al. (2010) Two routes to leukemic transformation after a JAK2 mutation‐positive myeloproliferative neoplasm. Blood 115 (14): 2891–2900.

Bellanger D, Jacquemin V, Chopin M, et al. (2014) Recurrent JAK1 and JAK3 somatic mutations in T‐cell prolymphocytic leukemia. Leukemia 28 (2): 417–419.

Bercovich D, Ganmore I, Scott LM, et al. (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down's syndrome. Lancet 372 (9648): 1484–1492.

Bernard T, Gale RE and Linch DC (1996) Analysis of granulocyte colony stimulating factor receptor isoforms, polymorphisms and mutations in normal haemopoietic cells and acute myeloid leukaemia blasts. British Journal of Haematology 93 (3): 527–533.

Bhatt VR, Mourya R, Shrestha R, et al. (2015) Primary mediastinal large B‐cell lymphoma. Cancer Treatment Reviews 41 (6): 476–85.

Bianchi G and Munshi NC (2015) Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125 (20): 3049–3058.

Bouchekioua A, Scourzic L, de Wever O, et al. (2014) JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal‐type natural killer cell lymphoma. Leukemia 28 (2): 338–348.

Broseus J, Alpermann T, Wulfert M, et al. (2013) Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia 27 (9): 1826–1831.

Broseus J, Park JH, Carillo S, et al. (2014) Presence of calreticulin mutations in JAK2‐negative polycythemia vera. Blood 124 (26): 3964–3966.

Bulut GB, Sulahian R, Yao H, et al. (2013) Cbl ubiquitination of p85 is essential for Epo‐induced EpoR endocytosis. Blood 122 (24): 3964–3972.

Cabagnols X, Defour JP, Ugo V, et al. (2015) Differential association of calreticulin type 1 and type 2 mutations with myelofibrosis and essential thrombocytemia: relevance for disease evolution. Leukemia 29 (1): 249–252.

Cazzola M and Kralovics R (2014) From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 123 (24): 3714–3719.

Chaix A, Lopez S, Voisset E, et al. (2011) Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. Journal of Biological Chemistry 286 (8): 5956–5966.

Chaligne R, Tonetti C, Besancenot R, et al. (2008) New mutations of MPL in primitive myelofibrosis: only the MPL W515 mutations promote a G1/S‐phase transition. Leukemia 22 (8): 1557–1566.

Chang Y, Bluteau D, Debili N, et al. (2007) From hematopoietic stem cells to platelets. Journal of Thrombosis and Haemostasis 5 (Suppl): 1318–327.

Chapiro E, Russell L, Lainey E, et al. (2010) Activating mutation in the TSLPR gene in B‐cell precursor lymphoblastic leukemia. Leukemia 24 (3): 642–645.

Chatterjee‐Kishore M, van den Akker F and Stark GR (2000) Association of STATs with relatives and friends. Trends in Cell Biology 10 (3): 106–111.

Chen E, Beer PA, Godfrey AL, et al. (2010) Distinct clinical phenotypes associated with JAK2V617F reflect differential STAT1 signaling. Cancer Cell 18 (5): 524–535.

Cheon H and Stark GR (2009) Unphosphorylated STAT1 prolongs the expression of interferon‐induced immune regulatory genes. Proceedings of the National Academy of Sciences of the United States of America 106 (23): 9373–9378.

Choong ML, Pecquet C, Pendharkar V, et al. (2013) Combination treatment for myeloproliferative neoplasms using JAK and pan‐class I PI3K inhibitors. Journal of Cellular and Molecular Medicine 17 (11): 1397–1409.

Choudhary C, Olsen JV, Brandts C, et al. (2009) Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Molecular Cell 36 (2): 326–339.

Constantinescu SN, Ghaffari S and Lodish HF (1999) The erythropoietin receptor: structure, activation and intracellular signal transduction. Trends in Endocrinology and Metabolism 10 (1): 18–23.

Cools J, DeAngelo DJ, Gotlib J, et al. (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. New England Journal of Medicine 348 (13): 1201–1214.

Coustan‐Smith E, Mullighan CG, Onciu M, et al. (2009) Early T‐cell precursor leukaemia: a subtype of very high‐risk acute lymphoblastic leukaemia. Lancet Oncology 10 (2): 147–156.

Cumaraswamy AA, Lewis AM, Geletu M, et al. (2014) Nanomolar‐potency small molecule inhibitor of STAT5 protein. ACS Medicinal Chemistry Letters 5 (11): 1202–1206.

Dao KH, Solti MB, Maxson JE, et al. (2014) Significant clinical response to JAK1/2 inhibition in a patient with CSF3R‐T618I‐positive atypical chronic myeloid leukemia. Leukemia Research Reports 3 (2): 67–69.

Darnell JE Jr Kerr IM and Stark GR (1994) JAK‐STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264 (5164): 1415–1421.

Defour JP, Itaya M, Gryshkova V, et al. (2013) Tryptophan at the transmembrane‐cytosolic junction modulates thrombopoietin receptor dimerization and activation. Proceedings of the National Academy of Sciences of the United States of America 110 (7): 2540–2545.

Delhommeau F, Dupont S, Della Valle V, et al. (2009) Mutation in TET2 in myeloid cancers. New England Journal of Medicine 360 (22): 2289–2301.

Ding J, Komatsu H, Wakita A, et al. (2004) Familial essential thrombocythemia associated with a dominant‐positive activating mutation of the c‐MPL gene, which encodes for the receptor for thrombopoietin. Blood 103 (11): 4198–4200.

Ding BB, Yu JJ, Yu RY, et al. (2008) Constitutively activated STAT3 promotes cell proliferation and survival in the activated B‐cell subtype of diffuse large B‐cell lymphomas. Blood 111 (3): 1515–1523.

Ding J, Komatsu H, Iida S, et al. (2009) The Asn505 mutation of the c‐MPL gene, which causes familial essential thrombocythemia, induces autonomous homodimerization of the c‐Mpl protein due to strong amino acid polarity. Blood 114 (15): 3325–3328.

Dong F, van Paassen M, van Buitenen C, et al. (1995) A point mutation in the granulocyte colony‐stimulating factor receptor (G‐CSF‐R) gene in a case of acute myeloid leukemia results in the overexpression of a novel G‐CSF‐R isoform. Blood 85 (4): 902–911.

Duek A, Lundberg P, Shimizu T, et al. (2014) Loss of STAT1 decreases megakaryopoiesis and favors erythropoiesis in a JAK2‐V617F‐driven mouse model of MPNs. Blood 123 (25): 3943–3950.

Dusa A, Mouton C, Pecquet C, et al. (2010) JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. PLoS One 5 (6): e11157.

Elliott NE, Cleveland SM, Grann V, et al. (2011) FERM domain mutations induce gain of function in JAK3 in adult T‐cell leukemia/lymphoma. Blood 118 (14): 3911–3921.

Elliott MA, Pardanani A, Hanson CA, et al. (2015) ASXL1 mutations are frequent and prognostically detrimental in CSF3R‐mutated chronic neutrophilic leukemia. American Journal of Hematology.

Flanagan SE, Haapaniemi E, Russell MA, et al. (2014) Activating germline mutations in STAT3 cause early‐onset multi‐organ autoimmune disease. Nature Genetics 46 (8): 812–814.

Fleischman AG, Aichberger KJ, Luty SB, et al. (2011) TNFalpha facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood 118 (24): 6392–6398.

Flex E, Petrangeli V, Stella L, et al. (2008) Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. The Journal of Experimental Medicine 205 (4): 751–758.

Forbes LV, Gale RE, Pizzey A, et al. (2002) An activating mutation in the transmembrane domain of the granulocyte colony‐stimulating factor receptor in patients with acute myeloid leukemia. Oncogene 21 (39): 5981–5989.

Friedbichler K, Hoelbl A, Li G, et al. (2011) Serine phosphorylation of the Stat5a C‐terminus is a driving force for transformation. Frontiers in bioscience (Landmark edition) 16: 3043–56.

Gallipoli P, Cook A, Rhodes S, et al. (2014) JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 124 (9): 1492–1501.

Garcon L, Rivat C, James C, et al. (2006) Constitutive activation of STAT5 and Bcl‐xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 108 (5): 1551–1554.

Gnanasambandan K, Magis A and Sayeski PP (2010) The constitutive activation of Jak2‐V617F is mediated by a pi stacking mechanism involving phenylalanines 595 and 617. Biochemistry 49 (46): 9972–9984.

Grand FH, Hidalgo‐Curtis CE, Ernst T, et al. (2009) Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 113 (24): 6182–6192.

Green MR, Monti S, Rodig SJ, et al. (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD‐1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B‐cell lymphoma. Blood 116 (17): 3268–3277.

Griesinger F, Hennig H, Hillmer F, et al. (2005) A BCR‐JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes, Chromosomes & Cancer 44 (3): 329–333.

Grisouard J, Shimizu T, Duek A, et al. (2015) Deletion of Stat3 in hematopoietic cells enhances thrombocytosis and shortens survival in a JAK2‐V617F mouse model of MPN. Blood 125 (13): 2131–2140.

Gunawardana J, Chan FC, Telenius A, et al. (2014) Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nature Genetics 46 (4): 329–335.

Haddad E (2015) STAT3: too much may be worse than not enough!. Blood 125 (4): 583–584.

Haftchenary S, Luchman HA, Jouk AO, et al. (2013) Potent targeting of the STAT3 protein in brain cancer stem cells: a promising route for treating glioblastoma. ACS Medicinal Chemistry Letters 4 (11): 1102–1107.

Hantschel O, Warsch W, Eckelhart E, et al. (2012) BCR‐ABL uncouples canonical JAK2‐STAT5 signaling in chronic myeloid leukemia. Nature Chemical Biology 8 (3): 285–293.

Hao Y, Chapuy B, Monti S, et al. (2014) Selective JAK2 inhibition specifically decreases Hodgkin lymphoma and mediastinal large B‐cell lymphoma growth in vitro and in vivo. Clinical Cancer Research 20 (10): 2674–2683.

Harrison C, Kiladjian JJ, Al‐Ali HK, et al. (2012) JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. New England Journal of Medicine 366 (9): 787–798.

Harutyunyan A, Klampfl T, Cazzola M, et al. (2011) p53 lesions in leukemic transformation. New England Journal of Medicine 364 (5): 488–490.

Harvey RC, Mullighan CG, Chen IM, et al. (2010) Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B‐progenitor acute lymphoblastic leukemia. Blood 115 (26): 5312–5321.

Hasan S, Lacout C, Marty C, et al. (2013) JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNalpha. Blood 122 (8): 1464–1477.

Heinrich PC, Behrmann I, Haan S, et al. (2003) Principles of interleukin (IL)‐6‐type cytokine signalling and its regulation. Biochemical Journal 374 (Pt 1): 1–20.

Hertzberg L, Vendramini E, Ganmore I, et al. (2010) Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115 (5): 1006–1017.

Hornakova T, Staerk J, Royer Y, et al. (2009) Acute lymphoblastic leukemia‐associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin‐9 receptor alpha homodimers. Journal of Biological Chemistry 284 (11): 6773–6781.

Huang LJ, Constantinescu SN and Lodish HF (2001) The N‐terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Molecular Cell 8 (6): 1327–1338.

Itzykson R, Kosmider O, Renneville A, et al. (2013) Prognostic score including gene mutations in chronic myelomonocytic leukemia. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 31 (19): 2428–2436.

Jackson CC, Medeiros LJ and Miranda RN (2010) 8p11 myeloproliferative syndrome: a review. Human Pathology 41 (4): 461–476.

Jager R and Kralovics R (2011) Molecular pathogenesis of Philadelphia chromosome negative chronic myeloproliferative neoplasms. Current Cancer Drug Targets 11 (1): 20–30.

James C, Ugo V, Le Couedic JP, et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434 (7037): 1144–1148.

James C, Mazurier F, Dupont S, et al. (2008) The hematopoietic stem cell compartment of JAK2V617F‐positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood 112 (6): 2429–2438.

Jerez A, Clemente MJ, Makishima H, et al. (2012) STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T‐cell large granular lymphocyte leukemia. Blood 120 (15): 3048–3057.

Jiang X, Lopez A, Holyoake T, et al. (1999) Autocrine production and action of IL‐3 and granulocyte colony‐stimulating factor in chronic myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America 96 (22): 12804–12809.

Johnston JA, Bacon CM, Riedy MC, et al. (1996) Signaling by IL‐2 and related cytokines: JAKs, STATs, and relationship to immunodeficiency. Journal of Leukocyte Biology 60 (4): 441–452.

Kagoya Y, Yoshimi A, Tsuruta‐Kishino T, et al. (2014) JAK2V617F+ myeloproliferative neoplasm clones evoke paracrine DNA damage to adjacent normal cells through secretion of lipocalin‐2. Blood 124 (19): 2996–3006.

Klampfl T, Gisslinger H, Harutyunyan AS, et al. (2013) Somatic mutations of calreticulin in myeloproliferative neoplasms. New England Journal of Medicine 369 (25): 2379–2390.

Kleppe M, Lahortiga I, El Chaar T, et al. (2010) Deletion of the protein tyrosine phosphatase gene PTPN2 in T‐cell acute lymphoblastic leukemia. Nature Genetics 42 (6): 530–535.

Kleppe M, Soulier J, Asnafi V, et al. (2011a) PTPN2 negatively regulates oncogenic JAK1 in T‐cell acute lymphoblastic leukemia. Blood 117 (26): 7090–7098.

Kleppe M, Tousseyn T, Geissinger E, et al. (2011b) Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T‐cell non‐Hodgkin's lymphoma. Haematologica 96 (11): 1723–1727.

Kleppe M, Kwak M, Koppikar P, et al. (2015) JAK‐STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discovery 5 (3): 316–331.

Klingmuller U, Lorenz U, Cantley LC, et al. (1995) Specific recruitment of SH‐PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80 (5): 729–738.

Koo GC, Tan SY, Tang T, et al. (2012) Janus kinase 3‐activating mutations identified in natural killer/T‐cell lymphoma. Cancer Discovery 2 (7): 591–597.

Koskela HL, Eldfors S, Ellonen P, et al. (2012) Somatic STAT3 mutations in large granular lymphocytic leukemia. New England Journal of Medicine 366 (20): 1905–1913.

Kralovics R, Guan Y and Prchal JT (2002) Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Experimental Hematology 30 (3): 229–236.

Kralovics R, Passamonti F, Buser AS, et al. (2005) A gain‐of‐function mutation of JAK2 in myeloproliferative disorders. New England Journal of Medicine 352 (17): 1779–1790.

Kubatzky KF, Liu W, Goldgraben K, et al. (2005) Structural requirements of the extracellular to transmembrane domain junction for erythropoietin receptor function. Journal of Biological Chemistry 280 (15): 14844–14854.

Kuppers R, Engert A and Hansmann ML (2012) Hodgkin lymphoma. Journal of Clinical Investigation 122 (10): 3439–3447.

Lacronique V, Boureux A, Valle VD, et al. (1997) A TEL‐JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278 (5341): 1309–1312.

Landgren O and Tageja N (2014) MYD88 and beyond: novel opportunities for diagnosis, prognosis and treatment in Waldenstrom's macroglobulinemia. Leukemia 28 (9): 1799–1803.

Lee S, Park HY, Kang SY, et al. (2015) Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T‐cell lymphoma nasal type. Oncotarget 6 (19): 17764–76.

Levine RL, Wadleigh M, Cools J, et al. (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7 (4): 387–397.

Levy Y, Tsapis A and Brouet JC (1991) Interleukin‐6 antisense oligonucleotides inhibit the growth of human myeloma cell lines. Journal of Clinical Investigation 88 (2): 696–699.

Lin H, Kolosenko I, Bjorklund AC, et al. (2013) An activated JAK/STAT3 pathway and CD45 expression are associated with sensitivity to Hsp90 inhibitors in multiple myeloma. Experimental Cell Research 319 (5): 600–611.

Lo MC, Peterson LF, Yan M, et al. (2012) Combined gene expression and DNA occupancy profiling identifies potential therapeutic targets of t(8;21) AML. Blood 120 (7): 1473–1484.

Lo MC, Peterson LF, Yan M, et al. (2013) JAK inhibitors suppress t(8;21) fusion protein‐induced leukemia. Leukemia 27 (12): 2272–2279.

Longmore GD and Lodish HF (1991) An activating mutation in the murine erythropoietin receptor induces erythroleukemia in mice: a cytokine receptor superfamily oncogene. Cell 67 (6): 1089–1102.

Lu X, Levine R, Tong W, et al. (2005) Expression of a homodimeric type I cytokine receptor is required for JAK2V617F‐mediated transformation. Proceedings of the National Academy of Sciences of the United States of America 102 (52): 18962–18967.

Lu X, Huang LJ and Lodish HF (2008) Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. Journal of Biological Chemistry 283 (9): 5258–5266.

Lundberg P, Takizawa H, Kubovcakova L, et al. (2014) Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2‐V617F. The Journal of Experimental Medicine 211 (11): 2213–2230.

Lupardus PJ, Ultsch M, Wallweber H, et al. (2014) Structure of the pseudokinase‐kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proceedings of the National Academy of Sciences of the United States of America 111 (22): 8025–8030.

Macdonald D, Reiter A and Cross NC (2002) The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematologica 107 (2): 101–107.

Mager LF, Riether C, Schurch CM, et al. (2015) IL‐33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. Journal of Clinical Investigation 125 (7): 2579–91.

Malcovati L and Cazzola M (2013) Refractory anemia with ring sideroblasts. Best Practice & Research. Clinical Haematology 26 (4): 377–385.

Malcovati L, Della Porta MG, Pietra D, et al. (2009) Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood 114 (17): 3538–3545.

Malinge S, Ben‐Abdelali R, Settegrana C, et al. (2007) Novel activating JAK2 mutation in a patient with Down syndrome and B‐cell precursor acute lymphoblastic leukemia. Blood 109 (5): 2202–2204.

Malinge S, Ragu C, Della‐Valle V, et al. (2008) Activating mutations in human acute megakaryoblastic leukemia. Blood 112 (10): 4220–4226.

Mansour MR, Reed C, Eisenberg AR, et al. (2015) Targeting oncogenic interleukin‐7 receptor signalling with N‐acetylcysteine in T cell acute lymphoblastic leukaemia. British Journal of Haematology 168 (2): 230–238.

Marijanovic Z, Ragimbeau J, Kumar KG, et al. (2006) TYK2 activity promotes ligand‐induced IFNAR1 proteolysis. Biochemistry Journal 397 (1): 31–38.

Mark HF, Sotomayor EA, Nelson M, et al. (2006) Chronic idiopathic myelofibrosis (CIMF) resulting from a unique 3;9 translocation disrupting the janus kinase 2 (JAK2) gene. Experimental and Molecular Pathology 81 (3): 217–223.

Marty C, Lacout C, Droin N, et al. (2013) A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia 27 (11): 2187–2195.

Matsuki E and Younes A (2015) Lymphomagenesis in Hodgkin lymphoma. Seminars in Cancer Biology. DOI: 10/1016/PMID‐25725205.

Maxson JE, Gotlib J, Pollyea DA, et al. (2013) Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. New England Journal of Medicine 368 (19): 1781–1790.

Michalak M, Groenendyk J, Szabo E, et al. (2009) Calreticulin, a multi‐process calcium‐buffering chaperone of the endoplasmic reticulum. Biochemistry Journal 417 (3): 651–666.

Montano‐Almendras CP, Essaghir A, Schoemans H, et al. (2012) ETV6‐PDGFRB and FIP1L1‐PDGFRA stimulate human hematopoietic progenitor cell proliferation and differentiation into eosinophils: the role of nuclear factor‐kappaB. Haematologica 97 (7): 1064–1072.

Moraga I, Wernig G, Wilmes S, et al. (2015) Tuning cytokine receptor signaling by re‐orienting dimer geometry with surrogate ligands. Cell 160 (6): 1196–1208.

Morrison SJ and Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505 (7483): 327–334.

Mughal TI, Girnius S, Rosen ST, et al. (2014) Emerging therapeutic paradigms to target the dysregulated Janus kinase/signal transducer and activator of transcription pathway in hematological malignancies. Leukemia and Lymphoma 55 (9): 1968–1979.

Mullally A, Bruedigam C, Poveromo L, et al. (2013) Depletion of Jak2V617F myeloproliferative neoplasm‐propagating stem cells by interferon‐alpha in a murine model of polycythemia vera. Blood 121 (18): 3692–3702.

Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology American Society of Hematology Education Program 2012: 389–396.

Mullighan CG, Collins‐Underwood JR, Phillips LA, et al. (2009a) Rearrangement of CRLF2 in B‐progenitor‐ and Down syndrome‐associated acute lymphoblastic leukemia. Nature Genetics 41 (11): 1243–1246.

Mullighan CG, Zhang J, Harvey RC, et al. (2009b) JAK mutations in high‐risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America 106 (23): 9414–9418.

Nangalia J, Massie CE, Baxter EJ, et al. (2013) Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. New England Journal of Medicine 369 (25): 2391–2405.

Nebral K, Denk D, Attarbaschi A, et al. (2009) Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23 (1): 134–143.

Netchiporouk E, Litvinov IV, Moreau L, et al. (2014) Deregulation in STAT signaling is important for cutaneous T‐cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 13 (21): 3331–3335.

Neumann M, Greif PA and Baldus CD (2013) Mutational landscape of adult ETP‐ALL. Oncotarget 4 (7): 954–955.

Ngo VN, Young RM, Schmitz R, et al. (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470 (7332): 115–119.

Oh ST, Simonds EF, Jones C, et al. (2010) Novel mutations in the inhibitory adaptor protein LNK drive JAK‐STAT signaling in patients with myeloproliferative neoplasms. Blood 116 (6): 988–992.

Onishi M, Nosaka T, Misawa K, et al. (1998) Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Molecular and Cellular Biology 18 (7): 3871–3879.

Ortmann CA, Kent DG, Nangalia J, et al. (2015) Effect of mutation order on myeloproliferative neoplasms. New England Journal of Medicine 372 (7): 601–612.

Pardanani AD, Levine RL, Lasho T, et al. (2006) MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 108 (10): 3472–3476.

Pardanani A, Lasho TL, Laborde RR, et al. (2013) CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia 27 (9): 1870–1873.

Passamonti F, Rumi E, Pietra D, et al. (2006) Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 107 (9): 3676–3682.

Passamonti F, Rumi E, Pietra D, et al. (2010) A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 24 (9): 1574–1579.

Patnaik MM and Tefferi A (2015) Refractory anemia with ring sideroblasts and RARS with thrombocytosis. American Journal of Hematology 90 (6): 549–559.

Pecquet C, Staerk J, Chaligne R, et al. (2010) Induction of myeloproliferative disorder and myelofibrosis by thrombopoietin receptor W515 mutants is mediated by cytosolic tyrosine 112 of the receptor. Blood 115 (5): 1037–1048.

Peeters P, Raynaud SD, Cools J, et al. (1997) Fusion of TEL, the ETS‐variant gene 6 (ETV6), to the receptor‐associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90 (7): 2535–2540.

Pietras EM, Lakshminarasimhan R, Techner JM, et al. (2014) Re‐entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. The Journal of Experimental Medicine 211 (2): 245–262.

Pikman Y, Lee BH, Mercher T, et al. (2006) MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Medicine 3 (7): e270.

Plo I, Zhang Y, Le Couedic JP, et al. (2009) An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. The Journal of Experimental Medicine 206 (8): 1701–1707.

Poitras JL, Dal Cin P, Aster JC, et al. (2008) Novel SSBP2‐JAK2 fusion gene resulting from a t(5;9) (q14.1;p24.1) in pre‐B acute lymphocytic leukemia. Genes, Chromosomes & Cancer 47 (10): 884–889.

Porcu M, Kleppe M, Gianfelici V, et al. (2012) Mutation of the receptor tyrosine phosphatase PTPRC (CD45) in T‐cell acute lymphoblastic leukemia. Blood 119 (19): 4476–4479.

Poulain S, Roumier C, Decambron A, et al. (2013) MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 121 (22): 4504–4511.

Radtke S, Hermanns HM, Haan C, et al. (2002) Novel role of Janus kinase 1 in the regulation of oncostatin M receptor surface expression. Journal of Biological Chemistry 277 (13): 11297–11305.

Ragimbeau J, Dondi E, Alcover A, et al. (2003) The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO Journal 22 (3): 537–547.

Rajala HL, Eldfors S, Kuusanmaki H, et al. (2013) Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 121 (22): 4541–4550.

Ramakrishnan V, Kimlinger T, Haug J, et al. (2010) TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. American Journal of Hematology 85 (9): 675–686.

Rampal R, Al‐Shahrour F, Abdel‐Wahab O, et al. (2014) Integrated genomic analysis illustrates the central role of JAK‐STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood 123 (22): e123–133.

Reiter A, Walz C, Watmore A, et al. (2005) The t(8;9)(p22;p24) is a recurrent abnormality in chronic and acute leukemia that fuses PCM1 to JAK2. Cancer Research 65 (7): 2662–2667.

Ritz O, Guiter C, Dorsch K, et al. (2008) STAT6 activity is regulated by SOCS‐1 and modulates BCL‐XL expression in primary mediastinal B‐cell lymphoma. Leukemia 22 (11): 2106–2110.

Ritz O, Guiter C, Castellano F, et al. (2009) Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B‐cell lymphoma. Blood 114 (6): 1236–1242.

Ritz O, Rommel K, Dorsch K, et al. (2013) STAT6‐mediated BCL6 repression in primary mediastinal B‐cell lymphoma (PMBL). Oncotarget 4 (7): 1093–1102.

Roberts KG, Morin RD, Zhang J, et al. (2012) Genetic alterations activating kinase and cytokine receptor signaling in high‐risk acute lymphoblastic leukemia. Cancer Cell 22 (2): 153–166.

Roedl JB, Nevalainen M, Gonzalez FM, et al. (2015) Frequency, imaging findings, risk factors, and long‐term sequelae of distal clavicular osteolysis in young patients. Skeletal Radiology 44 (5): 659–666.

Rosti V, Villani L, Riboni R, et al. (2013) Spleen endothelial cells from patients with myelofibrosis harbor the JAK2V617F mutation. Blood 121 (2): 360–368.

Roy A, Roberts I and Vyas P (2012) Biology and management of transient abnormal myelopoiesis (TAM) in children with Down syndrome. Seminars in Fetal and Neonatal Medicine 17 (4): 196–201.

Royer Y, Staerk J, Costuleanu M, et al. (2005) Janus kinases affect thrombopoietin receptor cell surface localization and stability. Journal of Biological Chemistry 280 (29): 27251–27261.

Rozovski U, Wu JY, Harris DM, et al. (2014) Stimulation of the B‐cell receptor activates the JAK2/STAT3 signaling pathway in chronic lymphocytic leukemia cells. Blood 123 (24): 3797–3802.

Rui L, Emre NC, Kruhlak MJ, et al. (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18 (6): 590–605.

Russell LJ, Capasso M, Vater I, et al. (2009) Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B‐cell precursor acute lymphoblastic leukemia. Blood 114 (13): 2688–2698.

Saint‐Martin C, Leroy G, Delhommeau F, et al. (2009) Analysis of the ten‐eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood 114 (8): 1628–1632.

Sanda T, Tyner JW, Gutierrez A, et al. (2013) TYK2‐STAT1‐BCL2 pathway dependence in T‐cell acute lymphoblastic leukemia. Cancer Discovery 3 (5): 564–577.

Sasi W, Sharma AK and Mokbel K (2014) The role of suppressors of cytokine signalling in human neoplasms. Molecular Biology International 2014: 630797.

Saur SJ, Sangkhae V, Geddis AE, et al. (2010) Ubiquitination and degradation of the thrombopoietin receptor c‐Mpl. Blood 115 (6): 1254–1263.

Schwaab J, Ernst T, Erben P, et al. (2012) Activating CBL mutations are associated with a distinct MDS/MPN phenotype. Annals of Hematology 91 (11): 1713–1720.

Schwaab J, Schnittger S, Sotlar K, et al. (2013) Comprehensive mutational profiling in advanced systemic mastocytosis. Blood 122 (14): 2460–2466.

Schwaab J, Knut M, Haferlach C, et al. (2015) Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1‐JAK2 and BCR‐JAK2 fusion genes. Annals of Hematology 94 (2): 233–238.

Schwaller J, Frantsve J, Aster J, et al. (1998) Transformation of hematopoietic cell lines to growth‐factor independence and induction of a fatal myelo‐ and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO Journal 17 (18): 5321–5333.

Scott LM (2013) Lymphoid malignancies: another face to the Janus kinases. Blood Reviews 27 (2): 63–70.

Scott LM, Tong W, Levine RL, et al. (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. New England Journal of Medicine 356 (5): 459–468.

Shan Y, Gnanasambandan K, Ungureanu D, et al. (2014) Molecular basis for pseudokinase‐dependent autoinhibition of JAK2 tyrosine kinase. Nature Structural and Molecular Biology 21 (7): 579–584.

Shochat C, Tal N, Bandapalli OR, et al. (2011) Gain‐of‐function mutations in interleukin‐7 receptor‐alpha (IL7R) in childhood acute lymphoblastic leukemias. The Journal of Experimental Medicine 208 (5): 901–908.

Silvennoinen O and Hubbard SR (2015) Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 125 (22): 3388–92.

Silver RT, Kiladjian JJ and Hasselbalch HC (2013) Interferon and the treatment of polycythemia vera, essential thrombocythemia and myelofibrosis. Expert Review of Hematology 6 (1): 49–58.

Soucie E, Hanssens K, Mercher T, et al. (2012) In aggressive forms of mastocytosis, TET2 loss cooperates with c‐KITD816V to transform mast cells. Blood 120 (24): 4846–4849.

Sowerwine KJ, Holland SM and Freeman AF (2012) Hyper‐IgE syndrome update. Annals of the New York Academy of Sciences 1250: 25–32.

Sozer S, Fiel MI, Schiano T, et al. (2009) The presence of JAK2V617F mutation in the liver endothelial cells of patients with Budd‐Chiari syndrome. Blood 113 (21): 5246–5249.

Spivak JL, Considine M, Williams DM, et al. (2014) Two clinical phenotypes in polycythemia vera. New England Journal of Medicine 371 (9): 808–817.

Springuel L, Hornakova T, Losdyck E, et al. (2014) Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors. Blood 124 (26): 3924–3931.

Staerk J, Kallin A, Demoulin JB, et al. (2005) JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation: cross‐talk with IGF1 receptor. Journal of Biological Chemistry 280 (51): 41893–41899.

Staerk J, Lacout C, Sato T, et al. (2006) An amphipathic motif at the transmembrane‐cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood 107 (5): 1864–1871.

Stark GR and Darnell JE Jr (2012) The JAK‐STAT pathway at twenty. Immunity 36 (4): 503–514.

Tapper W, Jones AV, Kralovics R, et al. (2015) Genetic variation at MECOM, TERT, JAK2 and HBS1L‐MYB predisposes to myeloproliferative neoplasms. Nature Communications 6: 6691.

Tasian SK and Loh ML (2011) Understanding the biology of CRLF2‐overexpressing acute lymphoblastic leukemia. Critical Reviews in Oncogenesis 16 (1–2): 13–24.

Tefferi A, Lasho TL, Finke C, et al. (2014a) Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia 28 (7): 1568–1570.

Tefferi A, Thiele J, Vannucchi AM, et al. (2014b) An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia 28 (7): 1407–1413.

Tefferi A, Wassie EA, Guglielmelli P, et al. (2014c) Type 1 versus Type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. American Journal of Hematology 89 (8): E121–124.

Them NC, Bagienski K, Berg T, et al. (2015) Molecular responses and chromosomal aberrations in patients with polycythemia vera treated with peg‐proline‐interferon alpha‐2b. American Journal of Hematology 90 (4): 288–294.

Tiedt R, Hao‐Shen H, Sobas MA, et al. (2008) Ratio of mutant JAK2‐V617F to wild‐type Jak2 determines the MPD phenotypes in transgenic mice. Blood 111 (8): 3931–3940.

Tomasson MH, Xiang Z, Walgren R, et al. (2008) Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood 111 (9): 4797–4808.

Toms AV, Deshpande A, McNally R, et al. (2013) Structure of a pseudokinase‐domain switch that controls oncogenic activation of Jak kinases. Nature Structural and Molecular Biology 20 (10): 1221–1223.

Touw IP, Palande K and Beekman R (2013) Granulocyte colony‐stimulating factor receptor signaling: implications for G‐CSF responses and leukemic progression in severe congenital neutropenia. Hematology/Oncology Clinics of North America 27 (1): 61–73, viii.

Uze G, Schreiber G, Piehler J, et al. (2007) The receptor of the type I interferon family. Current Topics in Microbiology and Immunology 316: 71–95.

Vainchenker W, Delhommeau F, Constantinescu SN, et al. (2011) New mutations and pathogenesis of myeloproliferative neoplasms. Blood 118 (7): 1723–1735.

Valent P (2014) Targeting the JAK2‐STAT5 pathway in CML. Blood 124 (9): 1386–1388.

Van Roosbroeck K, Cox L, Tousseyn T, et al. (2011) JAK2 rearrangements, including the novel SEC31A‐JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood 117 (15): 4056–4064.

Vannucchi AM, Lasho TL, Guglielmelli P, et al. (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27 (9): 1861–1869.

Verstovsek S, Mesa RA, Gotlib J, et al. (2012) A double‐blind, placebo‐controlled trial of ruxolitinib for myelofibrosis. New England Journal of Medicine 366 (9): 799–807.

Verstovsek S, Passamonti F, Rambaldi A, et al. (2014) A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 Inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. Cancer 120 (4): 513–520.

Wang X, Haylack D, Siang Hu C, et al. (2014) Thrombopoietin agonist is capable of affecting stem and progenitor cells of patients with myelofibrosis. Blood (ASH Annual Meeting Abstract) 124 (21): 819.

Walker SR, Nelson EA, Yeh JE, et al. (2013) STAT5 outcompetes STAT3 to regulate the expression of the oncogenic transcriptional modulator BCL6. Molecular and Cellular Biology 33 (15): 2879–2890.

Wallweber HJ, Tam C, Franke Y, et al. (2014) Structural basis of recognition of interferon‐alpha receptor by tyrosine kinase 2. Nature Structural and Molecular Biology 21 (5): 443–448.

Walters DK, Mercher T, Gu TL, et al. (2006) Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10 (1): 65–75.

Warsch W, Kollmann K, Eckelhart E, et al. (2011) High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 117 (12): 3409–3420.

Watowich SS, Wu H, Socolovsky M, et al. (1996) Cytokine receptor signal transduction and the control of hematopoietic cell development. Annual Review of Cell and Developmental Biology 12: 91–128.

Weniger MA, Melzner I, Menz CK, et al. (2006) Mutations of the tumor suppressor gene SOCS‐1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho‐STAT5 accumulation. Oncogene 25 (18): 2679–2684.

Wolfler A, Irandoust M, Meenhuis A, et al. (2009) Site‐specific ubiquitination determines lysosomal sorting and signal attenuation of the granulocyte colony‐stimulating factor receptor. Traffic 10 (8): 1168–1179.

Wormald S and Hilton DJ (2007) The negative regulatory roles of suppressor of cytokine signaling proteins in myeloid signaling pathways. Current Opinion in Hematology 14 (1): 9–15.

Wu H, Liu X, Jaenisch R, et al. (1995) Generation of committed erythroid BFU‐E and CFU‐E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83 (1): 59–67.

Xiang Z, Zhao Y, Mitaksov V, et al. (2008) Identification of somatic JAK1 mutations in patients with acute myeloid leukemia. Blood 111 (9): 4809–4812.

Xie M, Lu C, Wang J, et al. (2014) Age‐related mutations associated with clonal hematopoietic expansion and malignancies. Nature Medicine 20 (12): 1472–1478.

Yamaoka K, Saharinen P, Pesu M, et al. (2004) The Janus kinases (Jaks). Genome Biology 5 (12): 253.

Yan D, Hutchison RE and Mohi G (2012) Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood 119 (15): 3539–3549.

Yoshida K, Toki T, Okuno Y, et al. (2013) The landscape of somatic mutations in Down syndrome‐related myeloid disorders. Nature Genetics 45 (11): 1293–1299.

Yoshimura A, Longmore G and Lodish HF (1990) Point mutation in the exoplasmic domain of the erythropoietin receptor resulting in hormone‐independent activation and tumorigenicity. Nature 348 (6302): 647–649.

Zhang J, Ding L, Holmfeldt L, et al. (2012) The genetic basis of early T‐cell precursor acute lymphoblastic leukaemia. Nature 481 (7380): 157–163.

Zhou LL, Zhao Y, Ringrose A, et al. (2008) AHI‐1 interacts with BCR‐ABL and modulates BCR‐ABL transforming activity and imatinib response of CML stem/progenitor cells. The Journal of Experimental Medicine 205 (11): 2657–2671.

Zoi K and Cross NC (2015) Molecular pathogenesis of atypical CML, CMML and MDS/MPN‐unclassifiable. International Journal of Hematology 101 (3): 229–242.

Further Reading

Cazzola M and Kralovics R (2014) From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood 123 (24): 3714–3719.

Constantinescu SN, Leroy E, Gryshkova V, et al. (2013) Activating Janus kinase pseudokinase domain mutations in myeloproliferative and other blood cancers. Biochemical Society Transactions 41 (4): 1048–1054.

Daver N, Cortes J, Newberry K, et al. (2015) Ruxolitinib in combination with Lenalidomide as therapy for patients with myelofibrosis. Haematologica 100: 1058–1063. pii: haematol.2015.126821.

Degryse S, de Bock CE, Cox L, et al. (2014) JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T‐cell acute lymphoblastic leukemia in a mouse model. Blood 124 (20): 3092–3100.

Hammarén HM, Ungureanu D, Grisouard J, et al. (2015) ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proceedings of the National Academy of Sciences U S A 112 (15): 4642–4647.

Hornakova T, Springuel L, Devreux J, et al. (2011) Oncogenic JAK1 and JAK2‐activating mutations resistant to ATP‐competitive inhibitors. Haematologica 96 (6): 845–853.

Lundberg P, Nienhold R, Ambrosetti A, et al. (2014) Somatic mutations in calreticulin can be found in pedigrees with familial predisposition to myeloproliferative neoplasms. Blood 123 (17): 2744–2745.

O'Shea JJ, Schwartz DM, Villarino AV, et al. (2015) The JAK‐STAT pathway: impact on human disease and therapeutic intervention. Annual Review of Medicine 66: 311–328.

Shochat C, Tal N, Gryshkova V, et al. (2014) Novel activating mutations lacking cysteine in type I cytokine receptors in acute lymphoblastic leukemia. Blood 124 (1): 106–110.

Vannucchi AM, Kantarjian HM, Kiladjian JJ, et al. (2015) A pooled analysis of overall survival in COMFORT‐I and COMFORT‐II, 2 randomized phase 3 trials of ruxolitinib for the treatment of myelofibrosis. Haematologica PMID:26069290.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Constantinescu, Stefan N, and Vainchenker, William(Oct 2015) JAK/STAT Signalling and Haematological Malignancies. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0024988]