Weiss, Paul Alfred

Abstract

Paul A. Weiss (1898–1989), born and educated in Vienna (Austria), first studied the movements of butterfly wings. He argued that the locomotion patterns arrange a network system of behaviour, which controls as a whole the future movements. By transplantation and tissue culture experiments he studied the issue as to how motor nerves succeed in moving the correspondent muscle. The data he explicated with the resonance principle, stating that the nerve and the muscle are attuned to each other by electroacoustic signals. Until 1950, he discovered the axonal transport of peripheral nerves and invented a new surgical technique to bridge cut nerves without sutures. In developmental biology, he explained the mechanisms of cell contact and investigated the self‐sorting of embryonic cells, a precursor of modern stem cell research. In 1960, Weiss and his collaborators produced a media event when demonstrating that cell suspensions have the ability to reconstitute complete body organs. Further, they improved the experimental tools of phase contrast microscopy, time‐lapse motion films and tissue cultivation. Weiss' experimental work had a strong impact on the progress of developmental, cell and neurobiology in the twentieth century, and influenced the newly forming disciplines of cell biology and the neurosciences.

Key Concepts:

  • The concept of contact guidance improved Cajal's doctrine of neurotropism.

  • Experimental data demonstrated axonal flow in the 1940s, but were not accepted until the 1960s.

  • Experiments on cell sorting and cell suspensions are precursors of modern stem cell research.

  • The disciplination of the neurosciences was delayed by the resistance of (medical) neurophysiology.

  • Prematurity prevents the acceptance of experimental data, regardless of being correct.

Keywords: resonance principle; contact guidance; axonal transport; cell sorting; neurobiology

Figure 1.

Paul Weiss, portrait, sent to the Stazione Zoologica (Naples) in 1935. Reprinted with permission of the Archive of the Stazione Zoologica, Naples. © Stazione Zoologica, Naples.

Figure 2.

Six phases of movement of an young salamander on which a supernumerary left foreleg (T) was transplanted besides the left hind leg (O). The animal is in a cuvette filled with water. One clearly sees that the movements of O and T are identical in each phase; from a time‐lapse series.Reprinted with permission from Weiss , Figure . © Springer.

Figure 3.

(a) Composite diagram of principal fibre deformations (‘damming’) proximal to a constriction. Reprinted with permission from Weiss and Hiscoe , Figure 10. (b) Photomicrograph of fibress. Case R94 (4 weeks p. op.), X230. The end of the arterial constriction ring, seen in the upper right of the picture, is marked by the arrow. Reprinted with permission from Weiss and Hiscoe , Figure 11.

Figure 4.

Section through a graft of scrambled metanephric cells 9 days after being placed on a chorioallantoic membrane. Reorganisation has resulted in a symmetrical organ with cortex (C), medulla (M) and pelvis‐like cavity (P). Radial collecting tubules (T) are seen, some opening into the pelvis (O) ×38. Reprinted with permission from Weiss and Taylor , Figure 1. © Proceedings of the National Academy of Sciences of the USA.

Figure 5.

Chorioallantoic graft of liver cells, (B) bile capillary in a cord of parenchymal cells. (S) sinusoid, (C) canaliculus containing bile concrement, (V) venous sinus, (E) endothelial cells, (H) haematopoietic island, (K) Kupffer cell. Reprinted with permission from Weiss and Taylor , Figure 5. © Proceedings of the National Academy of Sciences of the USA.

close

References

Braus H (1905) Experimentelle Beiträge zur Frage nach der Entwicklung peripherer Nerven. Anatomischer Anzeiger 25: 433–479.

Cajal RY (1909) Histologie du Système Nerveux de l'homme et des Vertébrés. Madrid: Instituto Ramón y Cajal.

Droz B and Leblond CP (1963) Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. Journal of Comparative Neurology 121: 325–345, 374, 384, 387.

Harrison RG (1908) Embryonic transplantation and development of the nervous system. Anatomical Record 2: 385–410.

Harrison RG (1910) The outgrowth of the nerve fiber as a mode of protoplasmic movement. Journal of Experimental Zoology 9: 787–846.

Held H (1905) Zur Kenntnis einer neurofibrillären Continuität im Central nerven system der Wirbelthiere. Archiv für Anatomie und Physiologie 55–78.

Holtfreter J (1933) Der Einfluss von Wirtsalter und verschiedenen Organbezirken auf die Differenzierung von angelagertem Gastrulaektoderm. Roux' Archiv für Entwicklungsmechanik der Organismen 127: 619–775.

Holtfreter J (1938) Differenzierungspotenzen isolierter Teile der Anurengastrula. Roux' Archiv für Entwicklungsmechanik der Organismen 138: 657–738.

Krefft G (1997) The work of Ludwig Edinger and his Neurology Institute. In: Korf HW and Usadel KH (eds) Neuroendocrinology: Retrospect and Perspectives, pp. 407–423. Berlin u.a.: Springer Verlag.

Weiss P (1924) Die Funktion transplantierter Amphibienextremitäten. Aufstellung einer Resonanztheorie der motorischen Nerventätigkeit auf Grund abgestimmter Endorgane. Roux' Archiv für Entwicklungsmechanik der Organismen 102: 635–672.

Weiss P (1926) The relations between central and peripheral coordination. Journal of Comparative Neurology 40: 241–251.

Weiss P (1928) Erregungsspezifität und Erregungsresonanz. Grundzüge einer Theorie der motorischen Nerventätigkeit auf Grund spezifischer Zuordnung (‘Abstimmung’) zwischen zentraler und peripherer Erregungsform. In: Frisch Kv, Goldschmidt R, Ruhland W and Winterstein H (eds) Ergebnisse der Biologie. 3, pp. 1–151. Berlin: Springer Verlag.

Weiss P (1929) Erzwingung elementarer Strukturverschiedenheiten am in vitro wachsenden Gewebe. Die Wirkung mechanischer Spannung auf Richtung und Intensität des Gewebewachstums und ihre Analyse. Rouxs' Archiv für Entwicklungsmechanik der Organismen 116: 438–554.

Weiss PA (1934) In vitro experiments on the factors determining the course of the outgrowing nerve fiber. Journal of Experimental Zoology 68: 393–448.

Weiss PA (1939) Principles of Development: A Text in Experimental Embryology. New York: Holt, Rinehart, and Winston.

Weiss PA (1941) Nerve patterns: the mechanics of nerve growth. Growth 5: 163–203.

Weiss PA (1947) The problem of specificity in growth and development. Yale Journal of Biology and Medicine 19: 235–278.

Weiss PA (1955) Specificity in growth control. In: Butler EG (ed.) Biological Specificity and Growth, pp. 195–206. Princeton, NJ: Princeton University Press.

Weiss PA and Hiscoe HB (1948) Experiments on the mechanism of nerve growth. Journal of Experimental Zoology 107: 315–395.

Weiss PA and Taylor AC (1960) Reconstitution of complete organs from single‐cell suspensions of chick embryos in advanced stages of differentiation. Proceedings of the National Academy of Sciences of the USA 46: 1177–1185.

Further Reading

Brauckmann S (2004a) Paul A. Weiss, 1898–1989: The Cell Engineer. In: Stapleton D (ed.) Creating a Tradition of Biomedical Research, pp. 283–296. New York: Rockefeller University Press.

Brauckmann S (2004b). The virtue of being too early: Paul A. Weiss and ‘axonal transport’. History and Philosophy of the Life Sciences 26: 333–353.

Brauckmann S (2006) A network of tissue culture and cells: The American Society for Cell Biology. Archives internationales d'histoire et des sciences 56: 295–308.

Grafstein B (2001) Half a century of regeneration research. In: Ingaglia NA and Murray M (eds) Axonal Regeneration in the Central Nervous System, pp. 2–19. New York: Marcel Dekker.

Grafstein B (2006) Roger Sperry: pioneer of neuronal specificity. Journal of Neurophysiology 96: 2827–2829.

Overton J (1997) Paul Alfred Weiss, March 21, 1898–September 8, 1989. NAS Biographical Memoirs, vol. 72, pp. 3–16. Washington, DC: National Academy Press.

Contact Editor close
Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite close
Brauckmann, Sabine(Sep 2013) Weiss, Paul Alfred. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902.a0025050]