References
Bachmann J,
Raue A,
Schilling M et al.
(2011)
Division of labor by dual feedback regulators controls JAK2/STAT5 signaling over broad ligand range.
Molecular Systems Biology
7:
516.
Badis G,
Berger MF,
Philippakis AA et al.
(2009)
Diversity and complexity in DNA recognition by transcription factors.
Science
324:
1720–1723. doi:10.1126/science.1162327.
Bartel DP
(2004)
MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell
116:
281–297.
Becker V,
Schilling M,
Bachmann J et al.
(2010)
Covering a broad dynamic range: information processing at the erythropoietin receptor.
Science
328:
1404–1408.
Bielas JH,
Loeb KR,
Rubin BP,
True LD,
Loeb LA
(2006)
Human cancers express a mutator phenotype.
Proceedings of the National Academy of Sciences of the USA
103:
18238–18242. doi:10.1073/pnas.0607057103.
El‐Metwally S,
Hamza T,
Zakaria M and
Helmy M
(2013)
Next‐generation sequence assembly: four stages of data processing and computational challenges.
PLoS Computational Biology
9:
e1003345. doi:10.1371/journal.pcbi.1003345.
Engel C,
Scholz M and
Loeffler M
(2004)
A computational model of human granulopoiesis to simulate the hematotoxic effects of multicycle polychemotherapy.
Blood
104:
2323–2331.
Erler JT and
Linding R
(2009)
Network‐based drugs and biomarkers.
Journal of Pathology. doi:10.1002/path.2646.
Esquela‐Kerscher A and
Slack FJ
(2006)
Oncomirs – microRNAs with a role in cancer.
Nature Reviews Cancer
6:
259–269. doi:10.1038/nrc1840.
Fitzgerald JB,
Johnson BW,
Baum J et al.
(2014)
MM‐141, an IGF‐1 R and ErbB3 directed bispecific antibody, overcomes network adaptations that limit activity of IGF‐1 R inhibitors.
Molecular Cancer Therapeutics
13:
410–425.
Frieboes HB,
Lowengrub JS,
Wise S et al.
(2007)
Computer simulation of glioma growth and morphology.
NeuroImage
37:
S59–S70.
Golub TR,
Slonim DK,
Tamayo P et al.
(1999)
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
Science
286:
531–537.
González‐García I,
Solé RV and
Costa J
(2002)
Metapopulation dynamics and spatial heterogeneity in cancer.
Proceedings of the National Academy of Sciences of the USA
99:
13085–13089.
Gonzalez‐Perez A,
Deu‐Pons J and
Lopez‐Bigas N
(2012)
Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation.
Genome Medicine
4:
89. doi:10.1186/gm390.
Guebel DV,
Schmitz U,
Wolkenhauer O and
Vera J
(2012)
Analysis of cell adhesion during early stages of colon cancer based on an extended multi‐valued logic approach.
Molecular BioSystems
8:
1230–1242.
Gupta SK and
Schmitz U
(2011)
Bioinformatics analysis of high‐throughput experiments.
In: Singh MP,
Agrawal A and
Sharma B (eds)
Recent Trends in Biotechnology,
vol. 2,
pp. 129–156.
New York, NY: Nova Science Publishers.
Hector S,
Rehm M,
Schmid J et al.
(2012)
Clinical application of a systems model of apoptosis execution for the prediction of colorectal cancer therapy responses and personalisation of therapy.
Gut
61:
725–733.
Huang DW,
Sherman BT and
Lempicki RA
(2008)
Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Research
37:
1–13. doi:10.1093/nar/gkn923.
Iadevaia S,
Lu Y,
Morales FC,
Mills GB and
Ram PT
(2010)
Identification of optimal drug combinations targeting cellular networks: integrating phospho‐proteomics and computational network analysis.
Cancer Research
70:
6704–6714.
Janes KA,
Albeck JG,
Gaudet S et al.
(2005)
A systems model of signaling identifies a molecular basis set for cytokine‐induced apoptosis.
Science
310:
1646–1653.
Kim D,
Rath O,
Kolch W and
Cho K‐H
(2007)
A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways.
Oncogene
26:
4571–4579.
Kirouac DC,
Du JY,
Lahdenranta J et al.
(2013)
Computational modeling of ERBB2‐amplified breast cancer identifies combined ErbB2/3 blockade as superior to the combination of MEK and AKT inhibitors.
Science Signaling
6:
ra68.
Klinger B,
Sieber A,
Fritsche‐Guenther R et al.
(2013)
Network quantification of EGFR signaling unveils potential for targeted combination therapy.
Molecular Systems Biology
9:
673.
Lai X,
Schmitz U,
Gupta SK et al.
(2012)
Computational analysis of target hub gene repression regulated by multiple and cooperative miRNAs.
Nucleic Acids Research
40:
8818–8834.
Lange F,
Rateitschak K,
Kossow C,
Wolkenhauer O and
Jaster R
(2012)
Insights into erlotinib action in pancreatic cancer cells using a combined experimental and mathematical approach.
World Journal of Gastroenterology
18(43):
6226–6234.
Lindner AU,
Concannon CG,
Boukes GJ et al.
(2013)
Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy.
Cancer Research
73:
519–528.
Marin‐Sanguino A,
Gupta SK,
Voit EO and
Vera J
(2011)
Biochemical pathway modeling tools for drug target detection in cancer and other complex diseases.
Methods in Enzymology
487:
319–369.
Nagl S
(2005)
Cancer Bioinformatics: From Therapy Design to Treatment.
Chichester, England; Hoboken, NJ: John Wiley & Sons.
Powathil GG,
Adamson DJA and
Chaplain MAJ
(2013)
Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model.
PLoS Computational Biology
9:
e1003120.
Raia V,
Schilling M,
Böhm M et al.
(2011)
Dynamic mathematical modeling of IL13‐induced signaling in Hodgkin and primary mediastinal B‐cell lymphoma allows prediction of therapeutic targets.
Cancer Research
71:
693–704.
Ramis‐Conde I,
Drasdo D,
Anderson ARA and
Chaplain MAJ
(2008)
Modeling the influence of the E‐cadherin‐beta‐catenin pathway in cancer cell invasion: a multiscale approach.
Biophysical Journal
95:
155–165.
Rateitschak K,
Winter F,
Lange F,
Jaster R and
Wolkenhauer O
(2012)
Parameter identifiability and sensitivity analysis predict targets for enhancement of STAT1 activity in pancreatic cancer and stellate cells.
PLoS Computational Biology
8:
e1002815.
Reiterer V,
Fey D,
Kolch W,
Kholodenko BN and
Farhan H
(2013)
Pseudophosphatase STYX modulates cell‐fate decisions and cell migration by spatiotemporal regulation of ERK1/2.
Proceedings of the National Academy of Sciences of the USA
110:
E2934–E2943.
Ren X,
Wang Y,
Wang J and
Zhang X‐S
(2012)
A unified computational model for revealing and predicting subtle subtypes of cancers.
BMC Bioinformatics
13:
70. doi:10.1186/1471‐2105‐13‐70.
Ribba B,
Colin T and
Schnell S
(2006)
A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies.
Theoretical Biology and Medical Modelling
3:
7.
Ritchie W,
Rasko JEJ and
Flamant S
(2013)
MicroRNA target prediction and validation.
In: Schmitz U,
Wolkenhauer O and
Vera J (eds)
MicroRNA Cancer Regulation,
pp. 39–53.
Netherlands, Dordrecht: Springer.
Schmid J,
Dussmann H,
Boukes GJ et al.
(2012)
Systems analysis of cancer cell heterogeneity in caspase‐dependent apoptosis subsequent to mitochondrial outer membrane permeabilization.
Journal of Biological Chemistry
287:
41546–41559.
Schmitz U and
Wolkenhauer O
(2013)
Web resources for microRNA research.
In: Schmitz U,
Wolkenhauer O and
Vera J (eds)
MicroRNA Cancer Regulation,
pp. 225–250.
Netherlands, Dordrecht: Springer.
Schmitz U,
Wolkenhauer O and
Vera J
(2013)
MicroRNA Cancer Regulation Advanced Concepts, Bioinformatics and Systems Biology Tools.
Dordrecht: Springer.
Schoeberl B,
Pace EA,
Fitzgerald JB et al.
(2009)
Therapeutically targeting ErbB3: a key node in ligand‐induced activation of the ErbB receptor‐PI3K axis.
Science Signalling
2(77):
ra31.
Stolovitzky G,
Monroe D and
Califano A
(2007)
Dialogue on reverse‐engineering assessment and methods.
Annals of the New York Academy of Sciences
1115:
1–22. doi:10.1196/annals.1407.021.
Swameye I,
Muller TG,
Timmer J,
Sandra O and
Klingmuller U
(2003)
Identification of nucleocytoplasmic cycling as a remote sensor in cellular signaling by databased modeling.
Proceedings of the National Academy of Sciences of the USA
100:
1028–1033.
Tian Q,
Price ND and
Hood L
(2012)
Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine: key Symposium: systems cancer medicine.
Journal of Internal Medicine
271:
111–121. doi:10.1111/j.1365‐2796.2011.02498.x.
Subramanian A
(2005)
From the cover: gene set enrichment analysis: a knowledge‐based approach for interpreting genome‐wide expression profiles.
Proceedings of the National Academy of Sciences of the USA
102:
15545–15550. doi:10.1073/pnas.0506580102.
Thomas RK,
Baker AC,
DeBiasi RM et al.
(2007)
High‐throughput oncogene mutation profiling in human cancer.
Nature Genetics
39:
347–351. doi:10.1038/ng1975.
Thusberg J,
Olatubosun A and
Vihinen M
(2011)
Performance of mutation pathogenicity prediction methods on missense variants.
Human Mutation
32:
358–368. doi:10.1002/humu.21445.
Vera J,
Bachmann J,
Pfeifer AC et al.
(2008)
A systems biology approach to analyse amplification in the JAK2‐STAT5 signalling pathway.
BMC Systems Biology
2:
38. doi:10.1186/1752-0509-2-38.
Vera J and
Wolkenhauer O
(2008)
A system biology approach to understand functional activity of cell communication systems.
Methods in Cell Biology
90:
399–415.
Vera J,
Rateitschak K,
Lange F et al.
(2011)
Systems biology of JAK‐STAT signalling in human malignancies.
Progress in Biophysics and Molecular Biology
106:
426–434.
Vera J,
Schmitz U,
Lai X et al.
(2013)
Kinetic modeling‐based detection of genetic signatures that provide chemoresistance via the E2F1/p73/miR‐205 network.
Cancer Research
73:
3511–3524.
Vera J,
Schultz J,
Ibrahim S et al.
(2009)
Dynamical effects of epigenetic silencing of 14‐3‐3σ expression.
Molecular BioSystems
6:
264–273.
Wu D,
Rice CM and
Wang X
(2012)
Cancer bioinformatics: a new approach to systems clinical medicine.
BMC Bioinformatics
13:
71. doi:10.1186/1471‐2105‐13‐71.
Zhang X‐P,
Liu F and
Wang W
(2010)
Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage.
Journal of Biological Chemistry
285:
31571–31580.
Zinovyev A,
Morozova N,
Gorban AN and
Harel‐Belan A
(2013)
Mathematical modeling of microRNA–mediated mechanisms of translation repression.
In: Schmitz U,
Wolkenhauer O and
Vera J (eds)
MicroRNA Cancer Regulation,
pp. 189–224.
Netherlands, Dordrecht: Springer.
Further Reading
Aguda BD,
Kim Y,
Piper‐Hunter MG,
Friedman A and
Marsh CB
(2008)
MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR‐17–92, E2F and Myc.
Proceedings of the National Academy of Sciences of the USA
105:
19678–19683.
Ahn AC,
Tewari M,
Poon C‐S and
Phillips RS
(2006)
The clinical applications of a systems approach.
PLOS Medicine
3:
e209.
Aldridge BB,
Burke JM,
Lauffenburger DA and
Sorger PK
(2006)
Physicochemical modelling of cell signalling pathways.
Nature Cell Biology
8:
1195–1203.
Bachmann J,
Raue A,
Schilling M et al.
(2012)
Predictive mathematical models of cancer signalling pathways.
Journal of Internal Medicine
271(2):
155–165.
Byrne HM
(2010)
Dissecting cancer through mathematics: from the cell to the animal model.
Nature Reviews Cancer
10:
221–230.
Schilling M,
Maiwald T,
Hengl S et al.
(2009)
Theoretical and experimental analysis links isoform‐specific ERK signalling to cell fate decisions.
Molecular Systems Biology
5:
334.