References
Abdelaal T, Michielsen L, Cats D, et al. (2019) A comparison of automatic cell identification methods for single‐cell RNA sequencing data. Genome Biology 20 (1): 194.
AlJanahi AA, Danielsen M and Dunbar CE (2018) An introduction to the analysis of single‐cell RNA‐sequencing data molecular therapy. Methods & Clinical Development 10: 189–196.
Arendt D, Musser JM, Baker CVH, et al. (2016) The origin and evolution of cell types. Nature Reviews Genetics 17: 744.
Baron M, Veres A, Wolock Samuel L, et al. (2016) A single‐cell transcriptomic map of the human and mouse pancreas reveals inter‐ and intra‐cell population structure. Cell Systems 3 (4): 346–360.e344.
Blondel VD, Guillaume J‐L, Lambiotte R, et al. (2008) Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008 (10): P10008.
Bray NL, Pimentel H, Melsted P, et al. (2016) Near‐optimal probabilistic RNA‐seq quantification. Nature Biotechnology 34: 525.
Brennecke P, Anders S, Kim JK, et al. (2013) Accounting for technical noise in single‐cell RNA‐seq experiments. Nature Methods 10: 1093.
Burgess DJ (2019) Spatial transcriptomics coming of age. Nature Reviews Genetics 20 (6): 317–317.
Butler A, Hoffman P, Smibert P, et al. (2018) Integrating single‐cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology 36 (5): 411–420.
Büttner M, Miao Z, Wolf FA, et al. (2019) A test metric for assessing single‐cell RNA‐seq batch correction. Nature Methods 16 (1): 43–49.
Cao J, Spielmann M, Qiu X, et al. (2019) The single‐cell transcriptional landscape of mammalian organogenesis. Nature 566 (7745): 496–502.
Chambers DC, Carew AM, Lukowski SW, et al. (2019) Transcriptomics and single‐cell RNA‐sequencing. Respirology 24 (1): 29–36.
Crow M, Paul A, Ballouz S, et al. (2018) Characterizing the replicability of cell types defined by single cell RNA‐sequencing data using MetaNeighbor. Nature Communications 9 (1): 884.
Crow M and Gillis J (2019) Single cell RNA‐sequencing: replicability of cell types. Current Opinion in Neurobiology 56: 69–77.
Dobin A, Davis CA, Schlesinger F, et al. (2013) STAR: ultrafast universal RNA‐seq aligner. Bioinformatics (Oxford, England) 29 (1): 15–21.
Habib N, Avraham‐Davidi I, Basu A, et al. (2017) Massively parallel single‐nucleus RNA‐seq with DroNc‐seq. Nature Methods 14: 955.
Haghverdi L, Lun ATL, Morgan MD, et al. (2018) Batch effects in single‐cell RNA‐sequencing data are corrected by matching mutual nearest neighbors. Nature Biotechnology 36: 421.
Hicks SC, Townes FW, Teng M, et al. (2017) Missing data and technical variability in single‐cell RNA‐sequencing experiments. Biostatistics 19 (4): 562–578.
Hodge RD, Bakken TE, Miller JA, et al. (2019) Conserved cell types with divergent features in human versus mouse cortex. Nature 573 (7772): 61–68.
Hu P, Zhang W, Xin H, et al. (2016) Single cell isolation and analysis. Frontiers in Cell and Developmental Biology 4: 116–116.
Ilicic T, Kim JK, Kolodziejczyk AA, et al. (2016) Classification of low quality cells from single‐cell RNA‐seq data. Genome Biology 17: 29–29.
Keller L and Pantel K (2019) Unravelling tumour heterogeneity by single‐cell profiling of circulating tumour cells. Nature Reviews Cancer 19 (10): 553–567.
Keniry A and Blewitt ME (2018) Studying X chromosome inactivation in the single‐cell genomic era. Biochemical Society Transactions 46 (3): 577.
Kiselev VY, Andrews TS and Hemberg M (2019) Challenges in unsupervised clustering of single‐cell RNA‐seq data. Nature Reviews Genetics 20 (5): 273–282.
La Manno G, Soldatov R, Zeisel A, et al. (2018) RNA velocity of single cells. Nature 560 (7719): 494–498.
Laehnemann D, Köster J, Szczurek E, et al. (2019) 12 Grand challenges in single‐cell data science. Peer J Preprints 7: e27885v27883.
Lafzi A, Moutinho C, Picelli S, et al. (2018) Tutorial: guidelines for the experimental design of single‐cell RNA sequencing studies. Nature Protocols 13 (12): 2742–2757.
Lawson DA, Kessenbrock K, Davis RT, et al. (2018) Tumour heterogeneity and metastasis at single‐cell resolution. Nature Cell Biology 20 (12): 1349–1360.
Luecken MD and Theis FJ (2019) Current best practices in single‐cell RNA‐seq analysis: a tutorial. Molecular Systems Biology 15 (6): e8746–e8746.
Maaten L and Hinton G (2008) Visualizing data using t‐SNE. Journal of Machine Learning Research 9 (Nov): 2579–2605.
McInnes L., Healy J. and Melville J. (2018) Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.
Menon V (2017) Clustering single cells: a review of approaches on high‐and low‐depth single‐cell RNA‐seq data. Briefings in Functional Genomics 17 (4): 240–245.
Papalexi E and Satija R (2017) Single‐cell RNA sequencing to explore immune cell heterogeneity. Nature Reviews Immunology 18: 35.
Regev A, Teichmann SA, Lander ES, et al. (2017) The Human Cell Atlas. eLife 6: e27041.
Reinius B, Mold JE, Ramsköld D, et al. (2016) Analysis of allelic expression patterns in clonal somatic cells by single‐cell RNA–seq. Nature Genetics 48: 1430.
Schaum N, Karkanias J, Neff NF, et al. (2018) Single‐cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562 (7727): 367–372.
Schelker M, Feau S, Du J, et al. (2017) Estimation of immune cell content in tumour tissue using single‐cell RNA‐seq data. Nature Communications 8 (1): 2032.
Soneson C and Robinson MD (2018) Bias, robustness and scalability in single‐cell differential expression analysis. Nature Methods 15: 255.
Srivastava A, Malik L, Smith T, et al. (2019) Alevin efficiently estimates accurate gene abundances from dscRNA‐seq data. Genome Biology 20 (1): 65.
Svensson V, Natarajan KN, Ly L‐H, et al. (2017) Power analysis of single‐cell RNA‐sequencing experiments. Nature Methods 14: 381.
Svensson V, Vento‐Tormo R and Teichmann SA (2018) Exponential scaling of single‐cell RNA‐seq in the past decade. Nature Protocols 13: 599.
Tang F, Barbacioru C, Wang Y, et al. (2009) mRNA‐Seq whole‐transcriptome analysis of a single cell. Nature Methods 6: 377.
Trapnell C, Cacchiarelli D, Grimsby J, et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32: 381.
Van Gelder RN, von Zastrow ME, Yool A, et al. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences 87 (5): 1663.
Wagner DE, Weinreb C, Collins ZM, et al. (2018) Single‐cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360 (6392): 981–987.
Zappia L, Phipson B and Oshlack A (2018) Exploring the single‐cell RNA‐seq analysis landscape with the scRNA‐tools database. PLOS Computational Biology 14 (6): e1006245.
Zhang JM, Kamath GM and Tse DN (2019) Valid post‐clustering differential analysis for single‐cell RNA‐seq. Cell Systems 9 (4): 383–392.
Ziegenhain C, Vieth B, Parekh S, et al. (2017) Comparative analysis of single‐cell RNA sequencing methods. Molecular Cell 65 (4): 631–643.e634.
Further Reading
Angerer P, Simon L, Tritschler S, et al. (2017) Single cells make big data: new challenges and opportunities in transcriptomics. Current Opinion in Systems Biology 4: 85–91.
Chambers DC, Carew AM, Lukowski SW, et al. (2019) Transcriptomics and single‐cell RNA‐sequencing. Respirology 24 (1): 29–36.
Hwang B, Lee JH and Bang D (2018) Single‐cell RNA sequencing technologies and bioinformatics pipelines. Experimental & Molecular Medicine 50 (8): 96.
Kanter I and Kalisky T (2015) Single cell transcriptomics: methods and applications. Frontiers in Oncology 5: 53–53.
Shapiro E, Biezuner T and Linnarsson S (2013) Single‐cell sequencing‐based technologies will revolutionize whole‐organism science. Nature Reviews Genetics 14: 618.
Stegle O, Teichmann SA and Marioni JC (2015) Computational and analytical challenges in single‐cell transcriptomics. Nature Reviews Genetics 16: 133.
Stuart T and Satija R (2019) Integrative single‐cell analysis. Nature Reviews Genetics 20 (5): 257–272.
Papatheodorou I, Moreno P, Manning J, et al. (2019) Expression Atlas update: from tissues to single cells. Nucleic Acids Research 48 (D1): D77–D83.
Regev A, Teichmann SA, Lander ES, et al. (2017) Science forum: the human cell atlas. Elife 6: e27041.